Appendices

Appendix F Preliminary Water Quality Management Plan

Appendices

This page intentionally left blank.

Preliminary Water Quality Management Plan (PWQMP)

Project Name: 1401 Quail Street Newport Beach, CA 92660

Prepared for:

Intracorp SW, LLC 895 Dove Street, Suite 400 Newport Beach, CA 92660 949-757-8464

Prepared by:

Adams-Streeter Civil Engineers, Inc.

16755 Von Karman Ave, Suite 150 Irvine, California 92606 (949) 474-2330

DATE PREPARED: 04-25-2023

Engineer Nicholas A. Streeter Registration No. C70862

Project Owner's Certification			
Permit/Application No.	Pending	Grading Permit No.	Pending
Tract/Parcel Map No.		Building Permit No.	Pending
CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract)			

This Preliminary Water Quality Management Plan (WQMP) has been prepared for Intracorp SW, LLC by Adams Streeter Civil Engineers. The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the Santa Ana Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner: Rick	Owner: Rick Puffer		
Title	Vice President		
Company	Intracorp SW, LLC		
Address	895 Dove Street, Suite 400, Newport Beach, CA 92660		
Email	rpuffer@intracorphomes.com		
Telephone #	949-757-8464		
Signature		Date	

Contents	Page No.
Section I Discretionary Permit(s) and Water Quality Conditions	3
Section II Project Description	4
Section III Site Description	10
Section IV Best Management Practices (BMPs)	12
Section V Inspection/Maintenance Responsibility for BMPs	24
Section VI Site Plan and Drainage Plan	26
Section VII Educational Materials	27
Attachments	
Attachment A	BMP Site Plan
Attachment B	BMP Calculations
Attachment C TGD and Orange County Drain	nage Structures Map
Attachment DDrainage Ma	ps and Calculations
Attachment E	Infiltration Study
Attachment FEc	ducational Materials
Attachment G Operation and Maint	enance Information

Section I Discretionary Permit(s) and Water Quality Conditions

Project Infomation				
Pending	mit/Application No.	Tract/Parcel Map No.	427-332-04	
	ditional Information/	L	.1	
	nments:			
Water Qualit	•	Conditions		
All significant redevelopment projects, where significant redevelopment is defined as the addition or replacement of 5,000 or more square feet of impervious surface on an already developed site. A project water quality management plan (WQMP) conforming to the current water discharge requirements permit for the county of orange (order no. R8-2009-0030) (MS4 permit) prepared by a licensed civil engineer, shall be submitted to the department of public works for review and acceptance. The WQMP shall address section XII of the MS4 permit and all current surface water quality issues. The project WQMP shall include the permit and all current surface water quality issues			rement of 5,000 or ady developed site. P) conforming to the ne county of orange y a licensed civil public works for section XII of the ssues. The project	
Watershed-Based Plan Conditions				
Selenium, Toxapho Toxicity, Chlordar Indicator Bacteria, TMDL's for San D Bacteria Indicators	vide applicable ditions from watershed sed plans including HMPs and TMDLS.			
Toxicity, Chlordar Indicator Bacteria, TMDL's for San D Bacteria Indicators	ditions from watershed used plans including	DDT, PCB's (I futrients, Pestic go Creek and N Pathogens, Nu	Polychlorina cides, Sedim Newport Bay	

Intracorp SW, LLC Section I

F-4

Section II Project Description

II.1 Project Description

Description of Proposed Project					
Development Category (Verbatim from WQMP):	All significant redevelopment projects, where significant redevelopment is defined as the addition or replacement of 5,000 or more square feet of impervious surface on an already developed site.				
Project Area (ft²): 74,212	Number of Dwell	ing Units: 78	SIC Code:	6513	
Narrative Project Description:	This project is a residential redevelopment. The project site consists of the demolition of one existing commercial building, paved parking lot, and certain utilities. The proposed includes the construction of a multi-story building above an underground parking garage. Proposed BMPs, locations as shown on WQMP plan in Attachment C, will treat runoff for the entire site. A private round-about alley will be constructed for ingress/egress along Spruce Avenue.				
	Pervi	ous	Impervious		
Project Area	Area (acres or sq ft)	Percentage	Area (acres or sq ft)	Percentage	
Pre-Project Conditions	10,060 sq ft	13.6%	64,152 sq ft	86.4%	
Post-Project Conditions	10,332sq ft	13.9%	63,880sq ft	86.1%	
Drainage Patterns/Connections	The existing site drainage pattern is generally flowing from the south corner of the site to the north corner of the site with surface slopes of around 0.3% to 4.0%. The majority of the site is graded to flow to an existing concrete swale which discharges at the north corner of the site to Quail Street. The runoff will then flow southeasterly alongside the curb and gutter where it will eventually drain into an existing catch basin located at the northwest corner of the intersection of Quail Street and Spruce Avenue. The east side of the building 's runoff flows perpendicularly away from the building, towards the City right-of-way. The runoff will also eventually drain into the existing catch basin as described above.				

The catch basin discharges through a public 18" RCP storm drain that connects to a public 42" RCP storm drain. The storm drain eventually discharges to San Diego Creek which leads to Upper Newport Bay.

II.2 Potential Stormwater Pollutants

Pollutants of Concern			
Pollutant	E=Exp be of o	e One: ected to concern Expected concern	Additional Information and Comments
Suspended-Solid/ Sediment	E⊠	N□	Landscaping will exist.
Nutrients	E⊠	N□	Landscaping will exist.
Heavy Metals	E⊠	N□	Parking and an entrance/exit street will exist.
Pathogens (Bacteria/Virus)	ЕП	N⊠	Land use does not involve food or animal waste products.
Pesticides	E⊠	N□	Landscaping will exist.
Oil and Grease	E⊠	N□	Vehicle traffic expected.
Toxic Organic Compounds	E⊠	N□	Landcape maintenance and waste handling areas will exist.
Trash and Debris	E⊠	N□	Trash and debris expected.

Intracorp SW, LLC Section II Page 5

II.3 Hydrologic Conditions of Concern
No - Show map - OCFD Drainage Map is included in Attachment C.
\boxtimes Yes – Describe applicable hydrologic conditions of concern below. <i>Refer to Section 2.2.3 in the TGD.</i>
The project site is located in area that is potentially susceptible to hydromodification impacts. The site discharge also does not remain in an engineered or stabilized channel in its entire path to a receiving water body.
In order to address the hydrologic conditions of concern. The 2 year, 24-hr post-development runoff volume does not exceed the pre-development runoff volume by more than 5 percent. The totals for the runoff volume can be seen below.
Pre-Development: 6,316 cubic feet
Post-Development: 6,011 cubic feet
Post-Development: 4.8% Decrease
Hydrology calculations and map can be found in Attachment D of this report for reference.

II.4 Post Development Drainage Characteristics

The proposed drainage is to have two different DMA's, DMA-A and DMA-B. DMA-A will include the entirety of the building along with the adjacent areas between the building and the right-of-way/property line on the north, west, and east side of the building. DMA-B will be the area south of the building, which includes the entire round-a-bout access street and the area leading to the main entry of the building.

DMA-A will utilize Biotreatment BMPs in the form of Bioretention Planters with Permavoid Boxes in lieu of gravel and underdrain to treat/retain its required DCV of 2,644 ft³. The reason Permavoid Boxes will be used instead of gravel is because Permavoid Boxes have a 95% porosity rate compared to the 40% porosity of gravel. This allows a much greater volume of retainment with a smaller footprint. Another reason is Permavoid Boxes allows for runoff to be used as a means of irrigation for the planter box. Permavoid Boxes will infiltrate runoff upwards via capillary rise through the engineered soil media and then be used to irrigate the landscaped area of the planter box.

In regards to drainage, the majority of the DMA's runoff will be collected through roof drains. Runoff will be discharged directly on top of the Planter Boxes via roof downspout drains. Runoff will be bio-treated as it infiltrates through the engineered soil media of the planter boxes and then the runoff will be retained within the Permavoid structures/soil media/ponding. As the planter boxes are filled and the required DCV is treated/retained, runoff will be captured by an overflow inlet located at the top of ponding of the planter boxes. Runoff will then be ultimately discharged to Quail Street and Spruce Avenue via parkway culverts.

DMA-B will utilize a Harvest and Use BMP by using Permavoid Boxes for its required DCV of 1,066 ft³. Unlike DMA-A, runoff will discharge directly underground to the Permavoid Boxes. This means runoff will not be bio-treated by an engineered soil media before being retained. The retained runoff will be used for irrigation purposes however.

The runoff of DMA-B will sheet flow to catch basins located on the south side of the proposed round-a-bout access street. The catch basins will have Flogard Filter Inserts installed to pre-treat the runoff before entering the storm drain system. The storm drain system will then direct the runoff to the bottom of a Permavoid Boxes located at the south side of the building. The entirety of the DCV will be captured and retained within the Permavoid Boxes. Runoff will infiltrate upwards via capillary rise through the engineered soil media and then be used to irrigate the landscaped area above the Permavoid Boxes. During large storm events where the Permavoid Boxes are fully saturated and the required DCV is retained, runoff will be discharged to a parkway culvert that discharges to Spruce Avenue. The landscaped areas above the Permavoid boxes will also have supplemental irrigation provided for both cases of DMA-A and DMA-B.

II.5 Property Ownership/Management

The project site is owned by Intracorp SW, LLC. The project site is to be developed into a Podium structure with retail units and condominium units. A blanket easement will be recorded over the site for access and maintenance. A property management company will be formed and will be responsible for the maintenance of all proposed infrastructure and BMP's.

Intracorp SW, LLC Section II Page 8 F-9

Section III Site Description

III.1 Physical Setting

Planning Area/ Community Name	N/A
Location/Address	West corner of Quail Street and Spruce Avenue
	1401 Quail Street Newport Beach, CA 92660
Land Use	Proposed Condominium Complex
Zoning	Planned Community - PC11 Newport Place
Acreage	1.71 acres
Predominant Soil Type	Soil Type D

III.2 Site Characteristics

Precipitation Zone	0.75-inch Design Capture Storm Depth (per TGD Figure XVI-1)
Topography	The existing site is generally flat. The surrounding areas of the project site are a commercial building and parking lot to the northwest, a commercial building and parking lot to the southwest, Spruce Avenue to the southeast, and Quail Street to the northeast.
Drainage Patterns/Connections	The drainage pattern is generally from north to south. In the site's existing condition, there are no on-site drainage systems and the runoff would eventually flow off-site to a catch basin located at the northwest corner of the intersection of Quail Street and Spruce Avenue.
Soil Type, Geology, and Infiltration Properties	The upper 20 feet of the site is predominantly clay with low permeability which may not be suitable for infiltration. Although the soil after 20 feet is sand and has good infiltration rates, groundwater was encountered at ~25 feet, therefor infiltration is not recommended.

The maps in the TGD indicate that the site has soil Type D. Based on this, infiltration is not feasible for the project as well.

Site Characteristics (continued)		
Hydrogeologic (Groundwater) Conditions	Groundwater was encountered at approximately 25 feet below site grade.	
Geotechnical Conditions (relevant to infiltration)	The site is not in favor of infiltration. This is due to the site having soil type D and having mostly clay with low permeability within the upper 20 feet of the ground. Although infiltration tested well after 20 feet, groundwater is located shortly after at approximately 25 feet below grade. Due to this, the site is not suitable for an infiltration bmp.	
Off-Site Drainage	There are no concerns of off-site run on to the project.	
Utility and Infrastructure Information	In the site's existing condition, there are no on-site drainage systems. The runoff would eventually flow off-site to a catch basin located at the northwest corner of the intersection of Quail Street and Spruce Avenue.	

III.3 Watershed Description

	San Diego Creek Reach 1		
Receiving Waters	Newport Bay, Upper (Ecological Reserve)		
	Newport Bay, Lower		
	San Diego Creek (Reach 1): Benthic Community Effects, DDT,		
303(d) Listed Impairments	Indicator Bacteria, Malathion, Nutrients, Sedimentation/Siltation,		
	Selenium, Toxaphene, Toxicity		
	Newport Bay, Upper (Ecological Reserve): Chlordane, Copper,		
	DDT, Indicator Bacteria, Malathion, Nutrients, PCBs		
	(Polychlorinated biphenyls), Sedimentation/Siltation, and Toxicity.		
	Newport Bay, Lower San Diego Creek (Reach 1): Benthic Community Effects, DDT, Indicator Bacteria, Malathion, Nutrients, Sedimentation/Siltation, Selenium, Toxaphene, Toxicity Newport Bay, Upper (Ecological Reserve): Chlordane, Copper, DDT, Indicator Bacteria, Malathion, Nutrients, PCBs		

	Lower Newport Bay: Chlordane, Copper, DDT, Indicator Bacteria, Nutrients, PCBs, Toxicity.
Applicable TMDLs	San Diego Creek (Reach 1): Nutrients, Pesticides and Turbidity/Siltation.
	Upper Newport Bay (Ecological Reserve): Bacteria Indicators/Pathogens, Metals, Nutrients, Pesticides, and Turbidity/Siltation.
	Lower Newport Bay: Nutrients, Pesticides
Pollutants of Concern for the Project	Pollutants of concern: Suspended Solid/Sediments, Nutrients, Pathogens, Pesticides, Oil & Grease, Trash & Debris. Primary Pollutants of Concern: Suspended Solid/Sediments, Nutrients, Pathogens and Pesticides.
Environmentally Sensitive and Special Biological Significant Areas	There is no ESA within 200 feet of the project site.

Intracorp SW, LLC Section II
Page 11

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

(NOC Permit Area only) Is for the project area that incl criteria or if there are oppor on regional or sub-regional	YES 🗌	NO 🔀	
If yes, describe WIHMP feasibility criteria or regional/sub-regional LID opportunities.	If yes, describe WIHMP feasibility criteria or regional/sub-regional LID N/A		

Pro	Project Performance Criteria (continued)				
If HCOC exists, list applicable hydromodification control performance criteria (Section 7.II-2.4.2.2 in MWQMP)	HCOC is not applicable for this project. See section II.3 of the report for more information.				
List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	Priority Projects must infiltrate, harvest and re-use, evapotranspire, or bio treat/bio filter, the 85th percentile, 24- hour storm event (Design Capture Volume). A properly designed Bio treatment system may only be considered if infiltration harvest re-use and evapotranspiration (ET) cannot be feasibly implemented for the full design capture volume. In this case, infiltration, harvest re-use, and ET practices must be implemented to the greatest extent feasible and bio treatment may be provided for the remaining design capture volume.				
List applicable treatment control BMP performance criteria (Section 7.II-3.2.2 from MWQMP)	Satisfaction of LID performance criteria also fully satisfies treatment control performance criteria. If it is not feasible to meet LID performance criteria through retention and/ or bio treatment provided on site or at a subregional scale, then treatment control of treatment control BMP's shall be provided on site or offsite prior to discharge to waters of the US				
Calculate LID design storm capture volume for Project.	DCV = design storm capture volume, cu-ft C = runoff coefficient = (0.75 × imp + 0.15) Imp = impervious fraction of drainage area (ranges from 0 to 1) d = storm depth (inches) A = tributary area (acres)				

	DMA A:		
	Imp = 89.1%	d = 0.75 inches	A = 1.19acres
THE PROPERTY OF THE PROPERTY O	DCV = $(0.75 \times 0.891 - 0.000)$	+0.15) × 0.75 inches × 1	.19ac x 43560 sf/ac x
	1/12 in/ft		
	$= 2,644 \text{ ft}^3$		
	DMA B:		
	Imp = 81.0%	d = 0.75 inches	A = 0.52 acres
	DCV = (0.75×0.810)	+0.15) x 0.75 inches x 0	0.52 ac x 43560 sf/ac x
	1/12 in/ft		
	$= 1,066 \text{ ft}^3$		

IV.2. SITE DESIGN AND DRAINAGE PLAN

The following section describes the site design BMPs used in this project and the methods used to incorporate them. Careful consideration of site design is a critical first step in storm water pollution prevention from new developments and redevelopments.

Site Design BMPs

Minimize Impervious Area

Impervious surfaces have been minimized by incorporating landscaped areas throughout the site surrounding the proposed building. Landscaping will be provided throughout the site within the common areas as well as around the perimeter of the building.

Preserve Existing Drainage Patterns and Time of Concentration

Runoff from the site will continue to flow similar to existing conditions. Low-flows and firstflush runoff will drain to a Permavoid Planter Boxes. The Permavoid Planter Boxes are sized to be able to treat the required DCV of their respective DMA's.

Disconnect Impervious Areas

Landscaping will be provided adjacent to sidewalks and along the perimeter of the building. Low-flows will drain to the proposed Permavoid Planter Box BMP's.

Protect Existing Vegetation and Sensitive Areas, and Revegetate Disturbed Areas

There are no existing vegetated or sensitive areas to preserve on the project site. All disturbed areas will either be paved or landscaped.

Drainage Management Areas:

In accordance with the MS4 permit and the 2013 OC TGD, the project site has been divided into Drainage Management Areas (DMAs) to be utilized for defining drainage areas and sizing LID and other treatment control BMPs. DMAs have been delineated based on the proposed site grading patterns, drainage patterns, storm drain and catch basin locations.

The Drainage Management Areas (DMA) locations, design capture volumes (DCV) and treatment flow rates (QDesign) for each DMA are illustrated and calculated in Attachment A-BMP Site Plan and Attachment B-BMP Calculations. These have been derived utilizing the "Simple Method" in accordance with the TGD Section III.1.2.

IV.3 LID BMP SELECTION AND PROJECT CONFORMANCE ANALYSIS

.

IV.3.1 Hydrologic Source Controls

HSC's are not utilized for this project. Runoff will be treated by Harvest and Use BMPs and Biotreatment BMPs.

Name	Included?
Localized on-lot infiltration	
Impervious area dispersion (e.g. roof top disconnection)	
Street trees (canopy interception)	
Residential rain barrels (not actively managed)	
Green roofs/Brown roofs	
Blue roofs	
Impervious area reduction (e.g. permeable pavers, site design)	
Other:	

Intracorp SW, LLC Section IV
Page 16

IV.3.2 Infiltration BMPs

Name	Included?	
Bioretention without underdrains		
Rain gardens		
Porous landscaping		
Infiltration planters		
Retention swales		
Infiltration trenches		
Infiltration basins		
Drywells		
Subsurface infiltration galleries		
French drains		
Permeable asphalt		
Permeable concrete		
Permeable concrete pavers		
Other:		
Other:		

Per the soils report, infiltration is not feasible due to high groundwater and poor infiltration rates. Also, the TGD Map in Attachment C indicates presence of Type D soils which are not suitable for infiltration.

IV.3.3 Evapotranspiration, Rainwater Harvesting BMPs

Name	Included?
All HSCs; See Section IV.3.1	
Surface-based infiltration BMPs	
Biotreatment BMPs	
Above-ground cisterns and basins	
Underground detention	
Other: Permavoid Boxes	
Other:	
Other:	

Per the soils report, infiltration is not feasible due to high groundwater and poor infiltration rates. Also, the TGD Map in Attachment C indicates presence of Type D soils which are not suitable for infiltration.

DMA-B will utilize Permavoid Boxes as a Rainwater Harvest and Use BMP. Runoff of DMA-B will be collected via catch basins that have Flogard Filters installed as a pre-treatment method. Runoff will then flow through the storm drain system directly to the underground Permavoid Boxes. The entirety of DMA-B's DCV will be retained within the Permavoid Boxes which have a porosity of 95%. Once the required DCV is retained, the runoff will infiltrate upwards through via capillary rise and then be used to irrigate the plants/landscaping area above the Permavoid Boxes.

During large storm events where the Permavoid Boxes are fully saturated and the required DCV is retained, runoff will be discharged to a parkway culvert that discharges to Spruce Avenue. This discharge method will be designed to handle a 100-year storm event.

See attachment B for BMP Calculations and fact sheets.

IV.3.4 Biotreatment BMPs

Name	Included?
Bioretention with underdrains	
Stormwater planter boxes with underdrains	
Rain gardens with underdrains	
Constructed wetlands	
Vegetated swales	
Vegetated filter strips	
Proprietary vegetated biotreatment systems	
Wet extended detention basin	
Dry extended detention basins	
Other: Bioretention Planters with Permavoid Boxes	\boxtimes
Other:	

Per the soils report, infiltration is not feasible due to high groundwater and poor infiltration rates. Also, the TGD Map in Attachment C indicates presence of Type D soils which are not suitable for infiltration.

DMA-A will utilize Biotreatment BMPs in the form of Bioretention Planters with Permavoid Boxes in lieu of gravel and underdrain. The reason DMA-A's BMP is considered biotreatment is because runoff will discharge directly on top of the planter boxes, where it will then be biotreated by the engineered soil media.

A Permavoid Planter Box effectively operates the same as a bioretention planter with underdrain without the need for gravel and an underdrain pipe. Runoff will discharge directly on top of the planter box via roof drain downspouts. Runoff will then infiltrate downwards and be treated by the engineered soil media. Below the engineered soil media will be the Permavoid Boxes, which retain the treated runoff as if it were the gravel of a bioretention basin.

Once the Planter Box is at capacity, meaning the ponding, soil media, and Permavoid Boxes are fully saturated with stormwater, runoff will be collected by an overflow inlet at the top of

Preliminary Water Quality Management Plan (PWQMP) 1401 Quail Street

ponding. The overflow inlet will discharge the runoff through an outlet pipe and then to a parkway culvert where runoff ultimately ends in either Spruce Avenue or Quail Street.

See attachment B for BMP Calculations and fact sheets.

Intracorp SW, LLC Section IV Page 20 F-21

IV.3.8 Non-structural Source Control BMPs

	Non-Structural Source Control BMPs					
		Che	ck One	If not applicable, state brief		
Identifier	Name	Included	Not Applicable	reason		
N1	Education for Property Owners, Tenants and Occupants	\boxtimes				
N2	Activity Restrictions					
N3	Common Area Landscape Management	\boxtimes				
N4	BMP Maintenance					
N5	Title 22 CCR Compliance (How development will comply)			Not required onsite		
N6	Local Industrial Permit Compliance			Does not pertain to site		
N7	Spill Contingency Plan			No spill concern onsite		
N8	Underground Storage Tank Compliance		\boxtimes	Not present onsite		
N9	Hazardous Materials Disclosure Compliance		\boxtimes	Not present onsite		
N10	Uniform Fire Code Implementation	\boxtimes				
N11	Common Area Litter Control	\boxtimes				
N12	Employee Training	\boxtimes				
N13	Housekeeping of Loading Docks	\boxtimes				
N14	Common Area Catch Basin Inspection	\boxtimes				
N15	Street Sweeping Private Streets and Parking Lots	\boxtimes				
N16	Retail Gasoline Outlets		\boxtimes	Not present onsite		

IV.3.9 Structural Source Control BMPs

Structural Source Control BMPs					
		Chec	k One	If not applicable, state brief	
Identifier	Name	Included	Not Applicable	reason	
S1	Provide storm drain system stenciling and signage	\boxtimes			
S2	Design and construct outdoor material storage areas to reduce pollution introduction		\boxtimes	Outdoor storage is not anticipated	
S3	Design and construct trash and waste storage areas to reduce pollution introduction	orage areas to reduce pollution			
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	\boxtimes			
S5	Protect slopes and channels and provide energy dissipation		\boxtimes	No slopes anticipated onsite	
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)		\boxtimes	Project not located in SDRWQCB	
S6	Dock areas		\boxtimes	Not present onsite	
S7	Maintenance bays			Not present onsite	
S8	Vehicle wash areas		\boxtimes	Not present onsite	
S9	Outdoor processing areas		\boxtimes	Not present onsite	
S10	Equipment wash areas		\boxtimes	Not present onsite	
S11	Fueling areas		\boxtimes	Not present onsite	
S12	Hillside landscaping		\boxtimes	Not present onsite	
S13	Wash water control for food preparation areas		\boxtimes	Not present onsite	
S14	Community car wash racks			Not present onsite	

IV.4 ALTERNATIVE COMPLIANCE PLAN (IF APPLICABLE)

IV.4.1 Water Quality Credits

Description of Proposed Project						
Project Types that Qualify for Water Quality Credits (Select all that apply):						
Redevelopment projects that reduce the overall impervious footprint of the project site.	2	Brownfield redevelopment, meaning redevelopment, expansion, or reuse of real property which may be complicated by the presence or potential presence of hazardous substances, pollutants or contaminants, and which have the potential to contribute to adverse ground or surface WQ if not redeveloped.		Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance).		
Mixed use development, such as a combination of residential, commercial, industrial, office, institutional, or other land uses which incorporate design principles that can demonstrate environmental benefits that would not be realized through single use projects (e.g. reduced vehicle trip traffic with the potential to reduce sources of water or air pollution). Transit-oriented design transit-oriented design transition and use residential or commencial, use residential or commencial, above criterion, but we within one half mile or rail, light rail or commencial, use residential or commencial, above criterion, but we within one half mile or categories, but may have or air pollution).		commercial and opublic trans on the country where the country is a mass to the commuter trains of the able to take	rea designed to sportation; similar to development center is ransit center (e.g. bus, n station). Such ke credit for both	Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).		
Developments with dedication of undeveloped portions to parks, preservation areas and other pervious uses.		Developments in historic districts or historic preservation areas.	variety of de to support re vocational n similar to cr developmen	rk developments, a evelopments designed esidential and leeds together – iteria to mixed use ht; would not be able it for both categories.	☐In-fill projects, the conversion of empty lots and other underused spaces into more beneficially used spaces, such as residential or commercial areas.	
Calculation of Water Quality Credits (if applicable)	N/A					

IV.4.2 Alternative Comp	iance Plan Informatior
-------------------------	------------------------

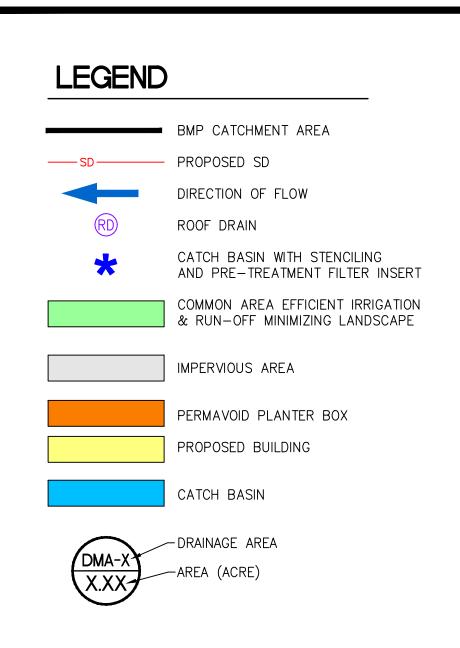
Not Applicable			

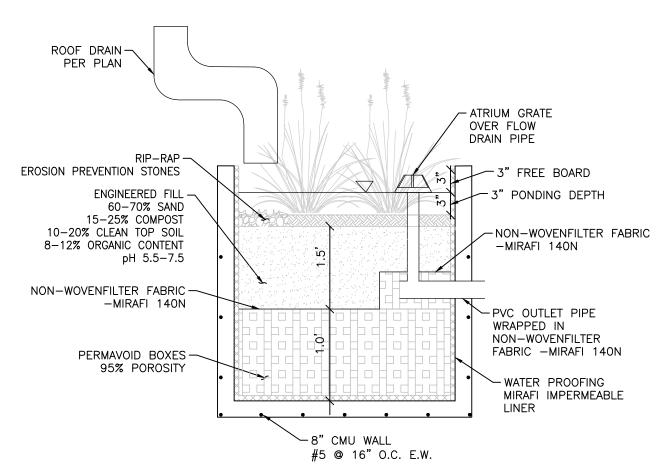
Intracorp SW, LLC Section IV Page 24 F-25

Section V Inspection/Maintenance Responsibility for BMPs

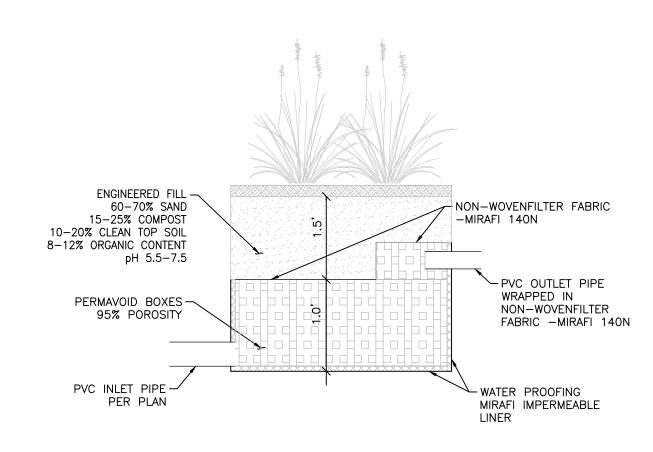
BMP Inspection/Maintenance Inspection/ **Minimum** Responsible **BMP Maintenance** Frequency of Party(s) **Activities Activities Required** -Inspect semiannually for Permavoid Planter beginning (October) and end of **Owner** Ongoing Areas the wet season (April) Educational materials will be provided to tenants annually. Materials to be **Education for** distributed are found in Property Owners, **Owner** Attachment F. Tenants will be Annually Tenants and provided these materials **Occupants** by the Owner prior to occupancy and periodically thereafter The Owner will prescribe activity restrictions to protect surface water quality, through lease terms or other equally effective measure, for **Activity Restrictions** Owner Ongoing the property. Restrictions include, but are not limited to, prohibiting vehicle maintenance or vehicle washing. Maintenance shall be consistent with City Common Area requirements. Fertilizer Landscape Monthly Owner and/or pesticide usage shall Management be consistent with County

Management Guidelines

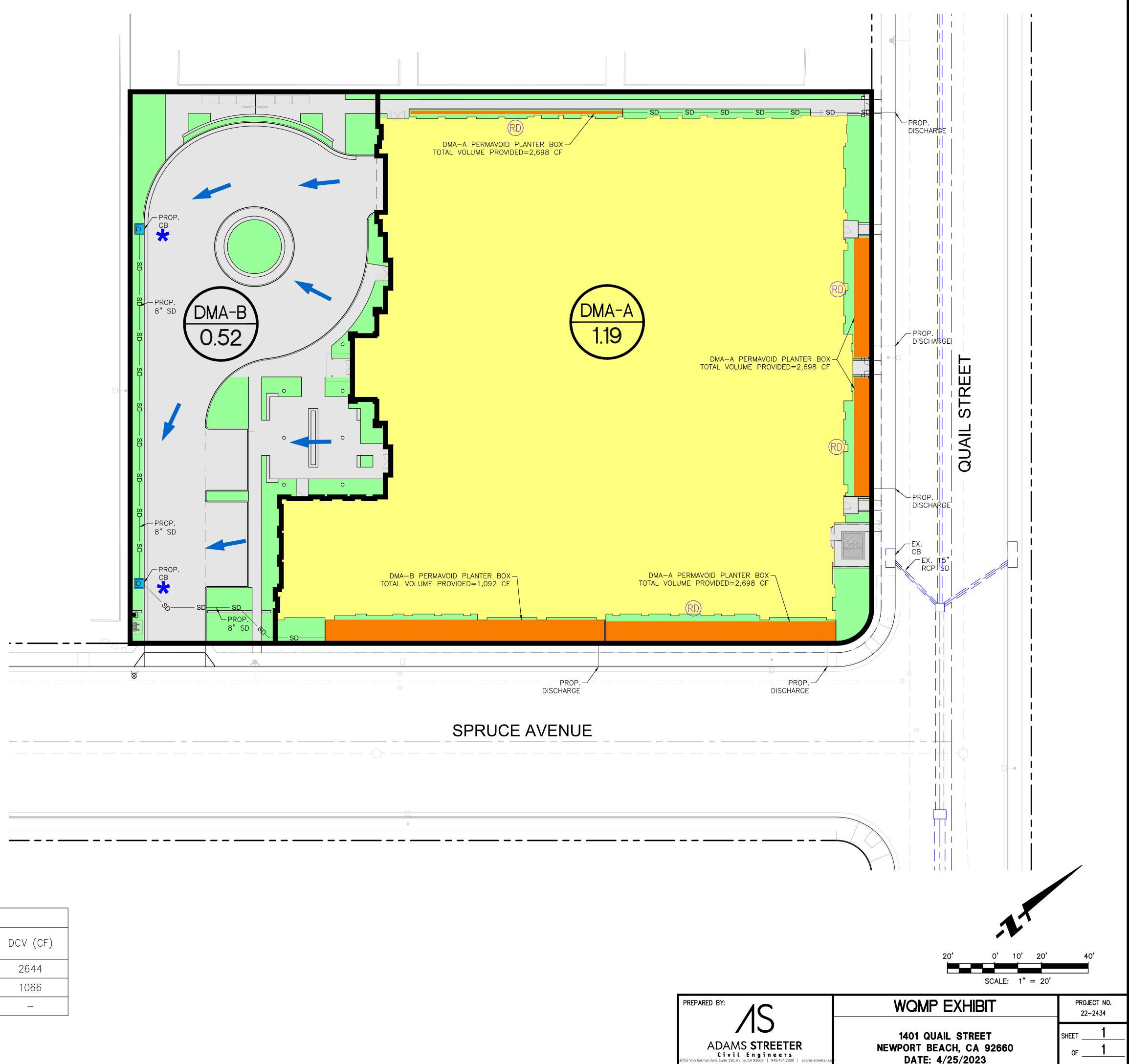

		C. H. CR CR	1
		for Use of Fertilizers (OC	
		DAMP Section 5.5) as well	
		as local requirements.	
		Maintenance includes	
		mowing, weeding, and debris removal on a weekly	
		basis. Trimming, replanting,	
		and replacement of	
		mulch shall be performed on	
		an as-needed basis to	
		prevent exposure of erodible	
		surfaces. Trimmings,	
		clippings, and other landscape	
		wastes shall be	
		properly disposed of in	
		accordance with local	
		regulations. Materials	
		temporarily stockpiled during	
		maintenance activities shall	
		be placed away from	
		water courses and storm	
		drain inlets.	
		Litter patrol and	
		other litter control activities	
Common Area Litter	Owner	shall be performed on a	Weekly
Control		weekly basis and in	,
		conjunction with routine	
		maintenance activities.	
		Educate all new employees/	
		managers on storm	
		water pollution prevention,	
		particularly good housekeeping practices, prior	
Employee Training	Owner	to the start of the rainy	Annually
		season (October 1). Refresher	
		courses shall be	
		conducted on an as needed	
		basis.	
		Drive aisles & parking areas	
		must be swept at least	
Street Sweeping		quarterly (every 3 months),	0
Private Streets and	Owner	including prior to the start	Quarterly
Parking Lots		of the rainy season (October	
		1).	


Common Area Catch Basin Inspection	Owner	Catch basin inlets and other drainage facilities shall be inspected after each storm event and once per year. Inlets and other facilities shall be cleaned prior	Annually
Storm Drain Stencilling and Signage	Owner	to the rainy season, by October 1 each year. Storm drain stencils shall be inspected for legibility, at minimum, once prior to the storm season, no later than October 1 each year. Those determined to be illegible will be re-stencilled as soon as possible.	Annually
Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control		In conjunction with routine maintenance activities, verify that landscape design continues to function properly by adjusting properly to eliminate overspray to hardscape areas, and to verify that irrigation timing and cycle lengths are adjusted in accordance with water demands, given time of year, weather, and day or night time temperatures. System testing shall occur twice per year. Water from testing/flushing shall be collected and properly disposed to the sewer system and shall not discharge to the storm drain system.	Twice per year

Section VI Site Plan and Drainage Plan VI.1 SITE PLAN AND DRAINAGE PLAN


• Refer to Attachment A

ATTACHMENT A BMP SITE PLAN



BIORETENTION PLANTERS WITH PERMAVOID FOR DMA-A NOT TO SCALE

HARVEST AND USE PERMAVOID PLANTER FOR DMA-B

DRAINAGE AREAS						
DRAINAGE AREA	AREA (ACRE)	PERVIOUS AREA (ACRE)	IMPERVIOUS AREA (ACRE)	% PERVIOUS	% IMPERVIOUS	DCV (CF)
DMA-A	1.19	0.13	1.06	10.9	89.1	2644
DMA-B	0.52	0.10	0.42	19.0	81.0	1066
TOTAL	1.71	0.23	1.48	13.9	86.1	_

NEWPORT BEACH, CA 92660 DATE: 4/25/2023

ATTACHMENT B BMP CALCULATIONS

DCV CALCULATIONS - DMA A

TECHNICAL GUIDANCE DOCUMENT APPENDICES

Worksheet B: Simple Design Capture Volume Sizing Method

Step 1: Determine the design capture storm depth used for calculating volume							
1	Enter design capture storm depth from Figure III.1, d (inches)	d=	0.75	inches			
2	Enter the effect of provided HSCs, d_{HSC} (inches) (Worksheet A)	d _{HSC} =	N/A	inches			
3	Calculate the remainder of the design capture storm depth, $d_{remainder}$ (inches) (Line 1 – Line 2)	d _{remainder} =	0.75	inches			
St	Step 2: Calculate the DCV						
1	Enter Project area tributary to BMP (s), A (acres)	A=	1.19	acres			
2	Enter Project Imperviousness, imp (unitless)	imp=	0.891				
3	Calculate runoff coefficient, $C = (0.75 \times imp) + 0.15$	C=	0.818				
4	Calculate runoff volume, $V_{design} = (C \times d_{remainder} \times A \times 43560 \times (1/12))$	V _{design} =	2644	cu-ft			
Step 3: Design BMPs to ensure full retention of the DCV							
St	ep 3: Design BMPs to ensure full retention of the DCV						
	ep 3: Design BMPs to ensure full retention of the DCV ep 3a: Determine design infiltration rate						
		K _{observed} =	N/A	In/hr			
St	ep 3a: Determine design infiltration rate Enter measured infiltration rate, $K_{observed}^{T}$ (in/hr)	K _{observed} = S _{total} =	N/A N/A	In/hr			
St	ep 3a: Determine design infiltration rate Enter measured infiltration rate, $K_{observed}$ (in/hr) (Appendix VII) Enter combined safety factor from Worksheet H, S_{total}			In/hr			
1 2 3	ep 3a: Determine design infiltration rate Enter measured infiltration rate, $K_{observed}^{-1}$ (in/hr) (Appendix VII) Enter combined safety factor from Worksheet H, S_{total} (unitless)	S _{total} =	N/A				
1 2 3	ep 3a: Determine design infiltration rate Enter measured infiltration rate, $K_{observed}$ (in/hr) (Appendix VII) Enter combined safety factor from Worksheet H, S_{total} (unitless) Calculate design infiltration rate, $K_{design} = K_{observed} / S_{total}$	S _{total} =	N/A				
1 2 3 St	ep 3a: Determine design infiltration rate Enter measured infiltration rate, $K_{observed}^{\dagger}$ (in/hr) (Appendix VII) Enter combined safety factor from Worksheet H, S_{total} (unitless) Calculate design infiltration rate, $K_{design} = K_{observed} / S_{total}$ ep 3b: Determine minimum BMP footprint	S _{total} = K _{design} =	N/A N/A	In/hr			

¹K_{observed} is the vertical infiltration measured in the field, before applying a factor of safety. If field testing measures a rate that is different than the vertical infiltration rate (for example, three-dimensional borehole percolation rate), then this rate must be adjusted by an acceptable method (for example, Porchet method) to yield the field estimate of vertical infiltration rate, K_{observed}. See Appendix VII.

DCV CALCULATIONS - DMA B

TECHNICAL GUIDANCE DOCUMENT APPENDICES

Worksheet B: Simple Design Capture Volume Sizing Method

Step 1: Determine the design capture storm depth used for calculating volume							
1	Enter design capture storm depth from Figure III.1, d (inches)	d=	0.75	inches			
2	Enter the effect of provided HSCs, d_{HSC} (inches) (Worksheet A)	d _{HSC} =	N/A	inches			
3	Calculate the remainder of the design capture storm depth, $d_{remainder}$ (inches) (Line 1 – Line 2)	d _{remainder} =	0.75	inches			
St	Step 2: Calculate the DCV						
1	Enter Project area tributary to BMP (s), A (acres)	A=	0.52	acres			
2	Enter Project Imperviousness, <i>imp</i> (unitless)	imp=	0.810				
3	Calculate runoff coefficient, $C=(0.75 \times imp) + 0.15$	C=	0.757				
4	Calculate runoff volume, $V_{design} = (C \times d_{remainder} \times A \times 43560 \times (1/12))$	V _{design} =	1,066	cu-ft			
St	Step 3: Design BMPs to ensure full retention of the DCV						
St	ep 3a: Determine design infiltration rate						
1	Enter measured infiltration rate, $K_{observed}^{1}$ (in/hr) (Appendix VII)	K _{observed} =	N/A	ln/hr			
2	Enter combined safety factor from Worksheet H, S_{total} (unitless)	S _{total} =	N/A				
3	Calculate design infiltration rate, $K_{design} = K_{observed} / S_{total}$	K _{design} =	N/A	ln/hr			
Step 3b: Determine minimum BMP footprint							
4	Enter drawdown time, T (max 48 hours)	T=	N/A	Hours			
5	Calculate max retention depth that can be drawn down within the drawdown time (feet), $D_{max} = K_{design} \times T \times (1/12)$	D _{max} =	N/A	feet			
6	Calculate minimum area required for BMP (sq-ft), $A_{min} = V_{design}/d_{max}$	A _{min} =	N/A	sq-ft			

¹K_{observed} is the vertical infiltration measured in the field, before applying a factor of safety. If field testing measures a rate that is different than the vertical infiltration rate (for example, three-dimensional borehole percolation rate), then this rate must be adjusted by an acceptable method (for example, Porchet method) to yield the field estimate of vertical infiltration rate, K_{observed}. See Appendix VII.

Los Angeles Low Impact Development BMP Design & Material Summary

4/24/2023

0 0

Date:

ECD:

Project Number: PV323388

Street Address: Quail St. Project, Newport CA

85th Rainfall Depth: 0.75 inches

Design Summary							Material Summary															
LID BMP	Drainage Area	Impervious Area	Catchment Area	Design Capture Vol.	Required Planter Area	Capture & Use Volume	Biofiltration Volume	Minimum Plant Factor	Soil Depth	Ponding Depth	Planter Depth (Interior)			oid Units ntity)	5		oillary Co (Quantit		king Geotex. (Roll-ft)	Tie onnectors	Shear onnectors	Soil Volume (CY)
	At	Ai	Acat	Vcap	Ар	Vcu	Vbf	PF	D soil	D pond	D ip	System	85s	85HD	PV150	36/90	36/60+	23/160T	Nicl	ŏ	ဝ	Est.
ID - #	(ft²)	(%)	(ft²)	(ft³)	(ft²)	(ft³)	(ft³)		(in.)	(in.)	(in.)	Туре	833	83110	PV130	30/30	24/30	Pairs	_			
CUB-1	51,836	89.1%	42,132	2633	1,989	1,860	1,160	0.44	18.0	2.0	35.0	150x2	·		1,468			1,468	332	7,340	245	121.6
CU-2	22,651	81.0%	16,943	1,059	1,133	1,059	0	0.44	18.0	N/A	30.0	150x2			836			836	190	4,180	140	69.2
Total	74,487		59,075	3,692	3,122	2,919	1,160						0	0	2,304	0	0	2,304	522	11,520	385	190.8

Permavoid Los Angeles LID Table 1.1

REF: 00PV323388c4846G

Permavoid Planter Soil Requirements (non-traffic loading):

- · 75% (+/- 5%) by weight shall consist of sand meeting the following:
 - For soil depths of 6 to 12 inches, average particle size shall be 500 μ m (0.020 in.)
 - For soil depths of 12 to 24 inches, average particle size shall be 300 μ m (0.012 in.)
- · Soils shall have a uniformity coefficient of 4.0 or less.
- · Soils shall have less than 10% fines (passing 200 sieve) by weight.
- · Soils used for biofiltration shall meet "Attachment H. Biofiltration / Biofiltration

 Design Criteria" as provided by the California Regional Water Quality Control Board.

Los Angeles Low Impact Development Capture & Use / Biofiltration Planter Design Calculations

Date: 4/24/2023

Project Name: Quail St. Project, Newport CA

Project Number: PV323388

Planter ID Number:	CUB	1	
Catchment Area:	Acat	42,132	ft²
85th Percentile Storm Depth:	D85	0.0625	ft
Soil Depth:	Dsoil	18.0	in.
Soil Available Water:	Wa	0%	%
Ponding Depth:	Dpond	2.0	in.
Soil Saturated Infiltration Rate:	Ksat	5.0	in/hr
Safety Factor:	SF	2.0	
Time To Fill:	Tf	2.0	hrs
Permavoid System Depth:	150x2	11.8	in.
Permavoid Voids:	Vpv	95	%
7-Month Reference Evapotranspiration:	ETo7	21.7	in.
Permavoid Irrigation Efficiency:	IE	0.85]

Design St	ummary	
Planter Area:	Ар	1989.1 ft²
Capture & Use Volume:	Vcu	1859.7 ft³
Biofiltration Volume:	Vbf	1160.3 ft ³
Plant Factor (min.):	PF	0.44
Internal Planter Depth:	D ip	35 in.

Material Requirements							
Permavoid Units:	PV-150	1468 Units					
Capillary Cones:	23/160 T	1468 Pairs					
Wicking Geotextile Length:	Cap. Tex.	232 - 332 ft					
Planting Media:	By Others	121.6 CY					

*NOTES: Quantities are for estimation only. Fluctuations in material quatities will occur based on the precise configuration. Contact ABT-Permavoid for planting media recommendations based on soil depth.

Calculate the Design Capture Volume (Vcap):

 $Vcap = D85 \cdot Acat$

 $Vcap = 0.0625ft \cdot 42132.3ft^2$

 $Vcap = 2633.3 \text{ ft}^3$

Calculate the Permavoid Capture & Use Depth (Dcu):

 $Dcu = (150x2 \cdot Vpv) + (Dsoil \cdot Wa)$

 $Dcu = (11.8in. \cdot 95\%) + (18in. \cdot 0\%)$

Dcu = 11.22 in. = 0.935 ft

Calculate the Planter Area (Ap):

 $Ap = 1989.1 \text{ ft}^2$

Calculate the Capture & Use Volume (Vcu):

 $Vcu = Ap \cdot Dcu$

 $Vcu = 1989.1 ft^2 \cdot 0.935ft$

 $Vcu = 1859.7 ft^3$

Calculate the Biofiltration Volume (Vbf):

 $Vbf = 1.5 \cdot (Vcap - Vcu)$

 $Vbf = 1.5 \cdot (2633.3 \text{ ft}^3 - 1859.7 \text{ ft}^3)$

 $Vbf = 1160.3 ft^3$

Calculate the Minimum Area Required (Amin):

Amin = $Vbf / [Tf \cdot (Ksat/SF) + Dpond]$

Amin = $1160.3 \text{ ft}^3 / \{[2\text{hrs} \cdot (5.0\text{in/hr} / 2) + 2\text{in.}] / 12\text{ipf}\}$

Amin = 1989.1 ft^2

Check the Planter Area (Ap) vs. the Minimum Area Required (Amin):

Ap vs. Amin

1989.1 ft² vs. 1989.1 ft²

 $1989.1 \, \text{ft}^2 = 1989.1 \, \text{ft}^2$

Ap = Amin

 \checkmark - CHECKED

Calculate the Minimum Required Plant Factor (PF):

 $PF = (Vcu \cdot IE) / (ETo7 \cdot Ap)$

PF = $(1859.7 \text{ ft}^3 \cdot 0.85) / [(21.7 \text{in.} / 12 \text{ipf}) \cdot 1989.1 \text{ ft}^2]$

PF = 0.44

Calculate the 7-Month Estimated Total Water Use (ETWU-7):

ETWU-7 = $(ETo7 \cdot PF \cdot Ap) / IE$

ETWU-7 = $[(21.7in. / 12ipf) \cdot 0.44 \cdot 1989.1 ft^2] / 0.85$

ETWU-7 = 1859.7 ft^3

Check the Capture & Use Volume (Vcu) vs. the 7-Month Estimated Total Water Usage (ETWU-7):

Vcu vs. ETWU-7

Vcu = ETWU-7

1859.7 ft³ vs. 1859.7 ft³

 $1859.7 \text{ ft}^3 = 1859.7 \text{ ft}^3$

✓ - CHECKED

PERMEABLE SUBBASE

TREE SOLUTIONS

GREEN STREETS

BLUE / GREEN ROOFS

Los Angeles Low Impact Development Capture & Use / Biofiltration Planter Design Calculations

Date: 4/24/2023

Project Name: Quail St. Project, Newport CA

Project Number: PV323388

	2	CU	Planter ID Number:
ft²	16,943	Acat	Catchment Area:
ft	0.0625	D85	85th Percentile Storm Depth:
in.	18.0	Dsoil	Soil Depth:
%	0%	Wa	Soil Available Water:
Allowed	0.0	Dpond	Ponding Depth:
	N/A	Ksat	Soil Saturated Infiltration Rate:
	2.0	SF	Safety Factor:
	2.0	Tf	Time To Fill:
in.	11.8	150x2	Permavoid System Depth:
%	95	Vpv	Permavoid Voids:
in.	21.7	ETo7	7-Month Reference Evapotranspiration:
	0.85	ΙE	Permavoid Irrigation Efficiency:

Design St	ummary	
Planter Area:	Ар	1132.6 ft²
Capture & Use Volume:	Vcu	1058.9 ft³
Biofiltration Volume:	Vbf	N/A
Plant Factor (min.):	PF	0.44
Internal Planter Depth:	Dip	30 in.

Material Requirements							
Permavoid Units:	PV-150	836 Units					
Capillary Cones:	23/160 T	836 Pairs					
Wicking Geotextile Length:	Cap. Tex.	134 - 189 ft					
Planting Media:	By Others	69.2 CY					

*NOTES: Quantities are for estimation only. Fluctuations in material quatities will occur based on the precise configuration. Contact ABT-Permavoid for planting media recommendations based on soil depth

Calculate the Design Capture Volume (Vcap):

 $Vcap = D85 \cdot Acat$

 $Vcap = 0.0625ft \cdot 16942.9ft^2$

 $Vcap = 1058.9 \text{ ft}^3$

Calculate the Permavoid Capture & Use Depth (Dcu):

 $Dcu = (150x2 \cdot Vpv) + (Dsoil \cdot Wa)$

 $Dcu = (11.8in. \cdot 95\%) + (18in. \cdot 0\%)$

Dcu = 11.22 in. = 0.935 ft

Calculate the Planter Area (Ap):

 $Ap = 1132.6 \text{ ft}^2$

Calculate the Capture & Use Volume (Vcu):

 $Vcu = Ap \cdot Dcu$

 $Vcu = 1132.6 \text{ ft}^2 \cdot 0.935 \text{ft}$

 $Vcu = 1058.9 \text{ ft}^3$

PERMEABLE SUBBASE

SOLUTIONS

GREEN STREETS

BLUE / GREEN ROOFS

Calculate the Minimum Required Plant Factor (PF):

 $PF = (Vcu \cdot IE) / (ETo7 \cdot Ap)$

PF = $(1058.9 \text{ ft}^3 \cdot 0.85) / [(21.7 \text{in.} / 12 \text{ipf}) \cdot 1132.6 \text{ ft}^2]$

PF = 0.44

Calculate the 7-Month Estimated Total Water Use (ETWU-7):

ETWU-7 = $(ETo7 \cdot PF \cdot Ap) / IE$

ETWU-7 = $[(21.7in. / 12ipf) \cdot 0.44 \cdot 1132.6 ft^2] / 0.85$

 $ETWU-7 = 1058.9 \text{ ft}^3$

Check the Capture & Use Volume (Vcu) vs. the 7-Month Estimated Total Water Usage (ETWU-7):

Vcu vs. ETWU-7 1058.9 ft3 vs. 1058.9 ft3

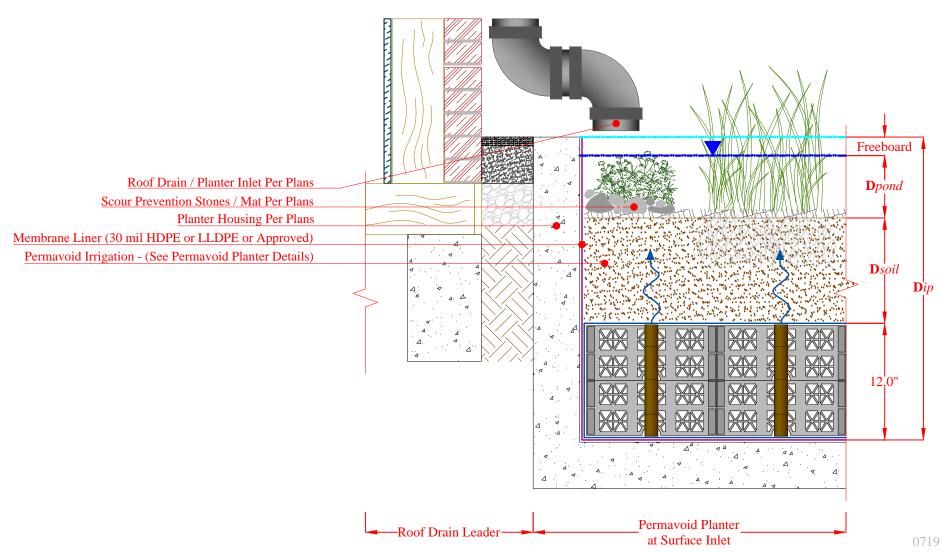
 $1058.9 \text{ ft}^3 = 1058.9 \text{ ft}^3$ Vcu = ETWU-7

√ - CHECKED

WATER IS OUR MOST PRECIOUS RESOURCE:

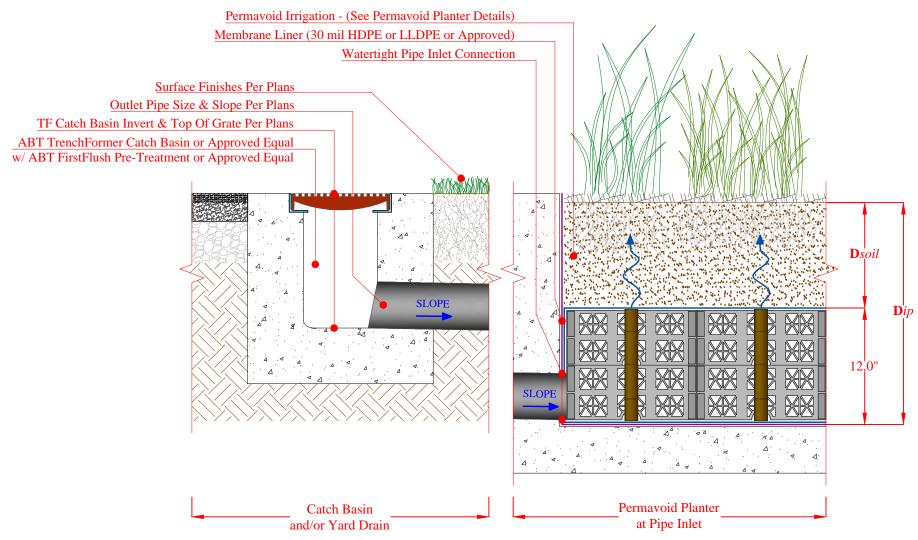
ABT Permavoid is a multi-functional stormwater management & water conservation system that mimics the natural water cycle and can save up to 30% on overall site drainage costs.

_	DETENTION	Modular units with 95% void ratio interlock with patented lateral connectors to create a monolithic stormwater management system eliminating the need for end of line ponds and tanks.
	PERMEABLE IFILTRATION	The ultra-shallow profile promotes stormwater infiltration over the largest area possible, including under traditional pavements like asphalt and concrete removing the added costs of permeable paving.
S	TRUCTURAL SUBBASE	The ultra-high strength (104 psi yield) safely and reliably transfers traffic loads to subgrade soils replacing large volumes of hauled subbase stone.
C	WATER ONVEYANCE	Stormwater is efficiently transported to discharge locations or landscaped areas for natural reuse eliminating drainage and irrigation pipes.
	CAPILLARY IRRIGATION	Patented wicking cones employ capillary action to bring stormwater directly to the root zone of landscaped areas while keeping it away from evaporative heat and sunlight for up to 60% savings vs traditional sprinkler irrigation.

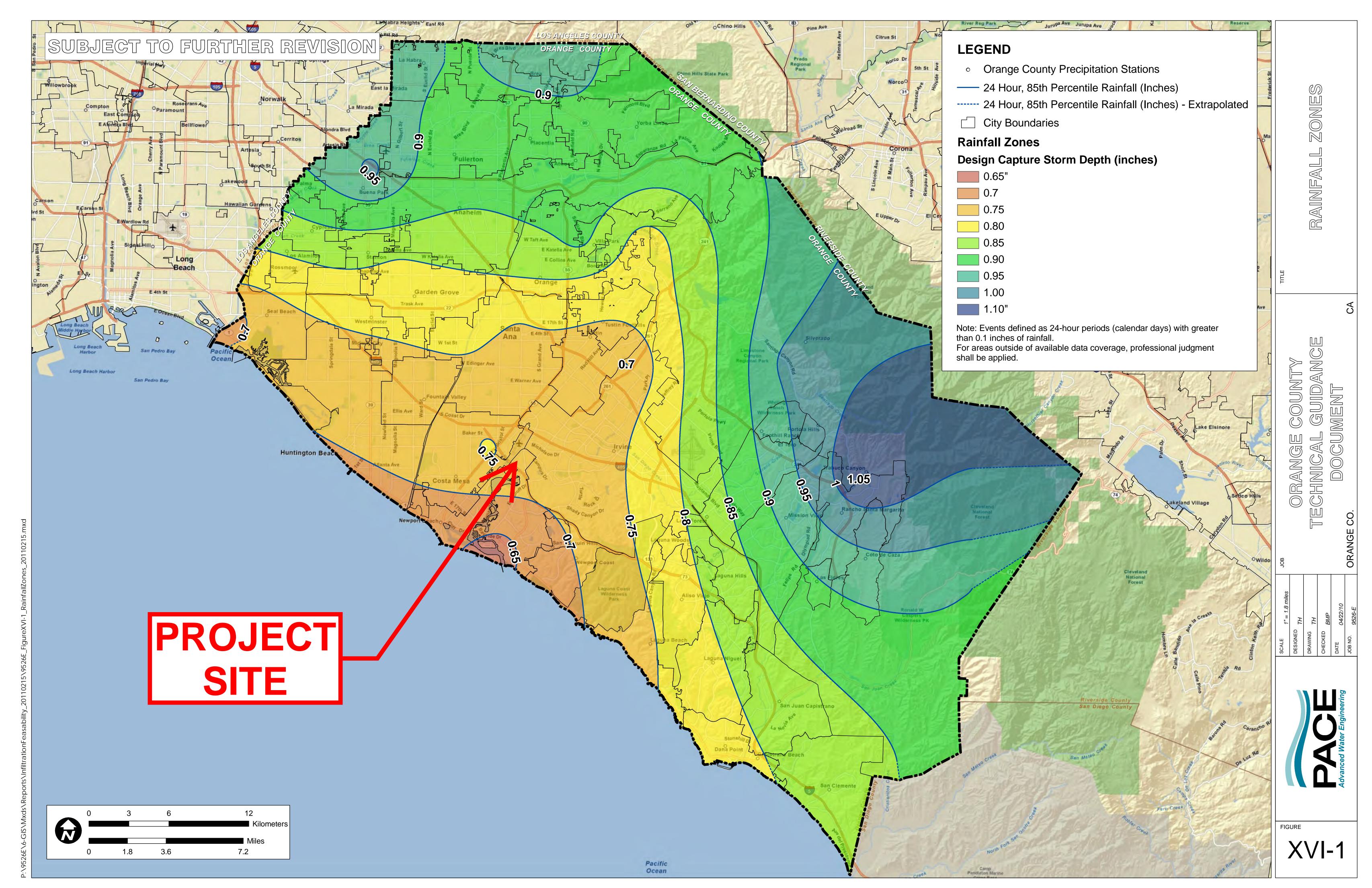

Since its introduction ABT Permavoid has revolutionized the way about which stormwater is thought. Its unique capabilities allow even the most challenging developed sites to behave like their natural pre-development counterparts. Whether returned to the community water cycle through infiltration or utilized locally through capillary irrigation, ABT Permavoid promotes the most natural, environmentally friendly methods of managing water. It is the clear choice on sites both large and small when designing sustainable, resilient landscapes that enhance neighborhood aesthetics, mitigate flood risks and during periods of drought, conserve our most precious resource.

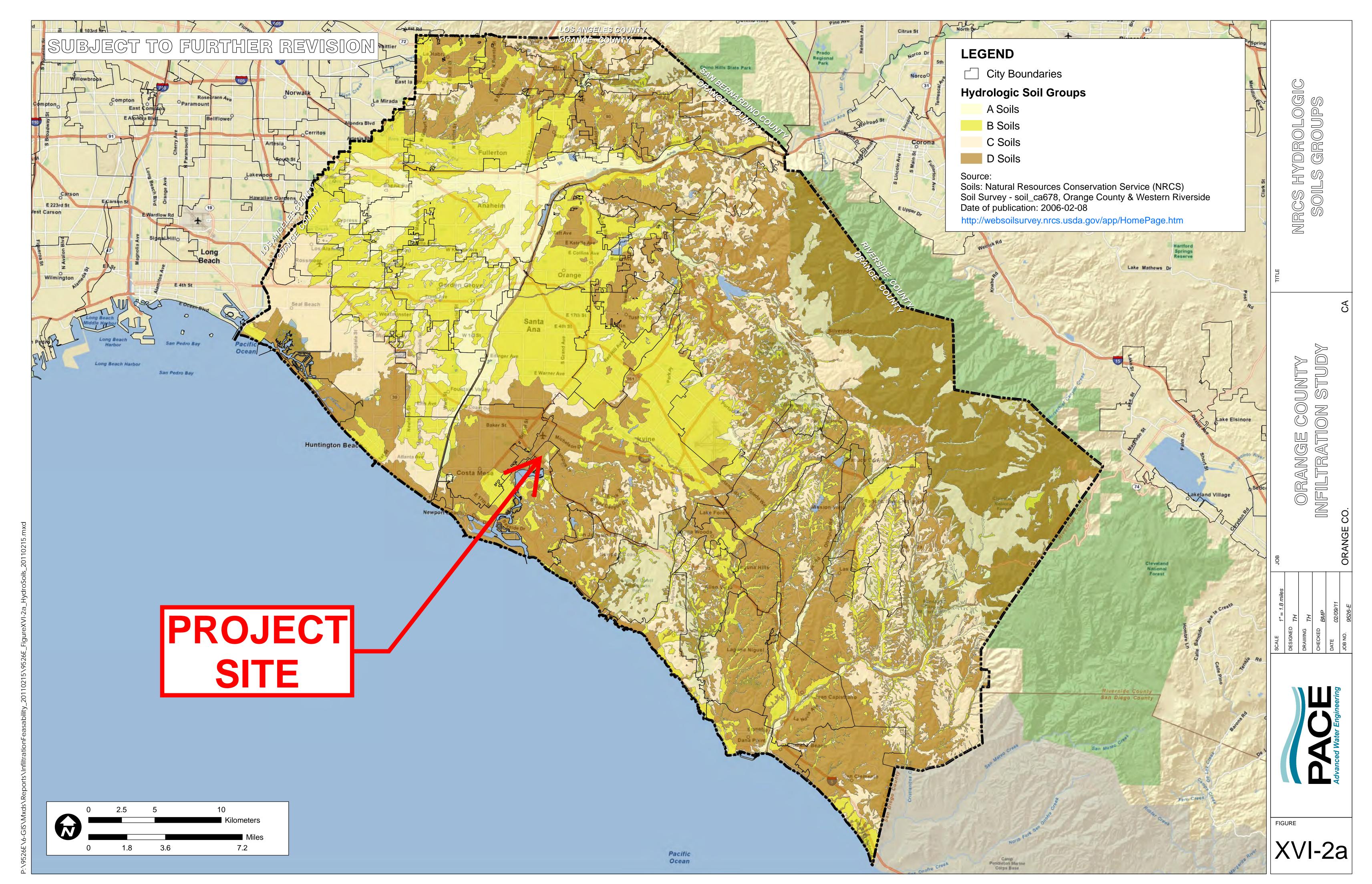
F-38

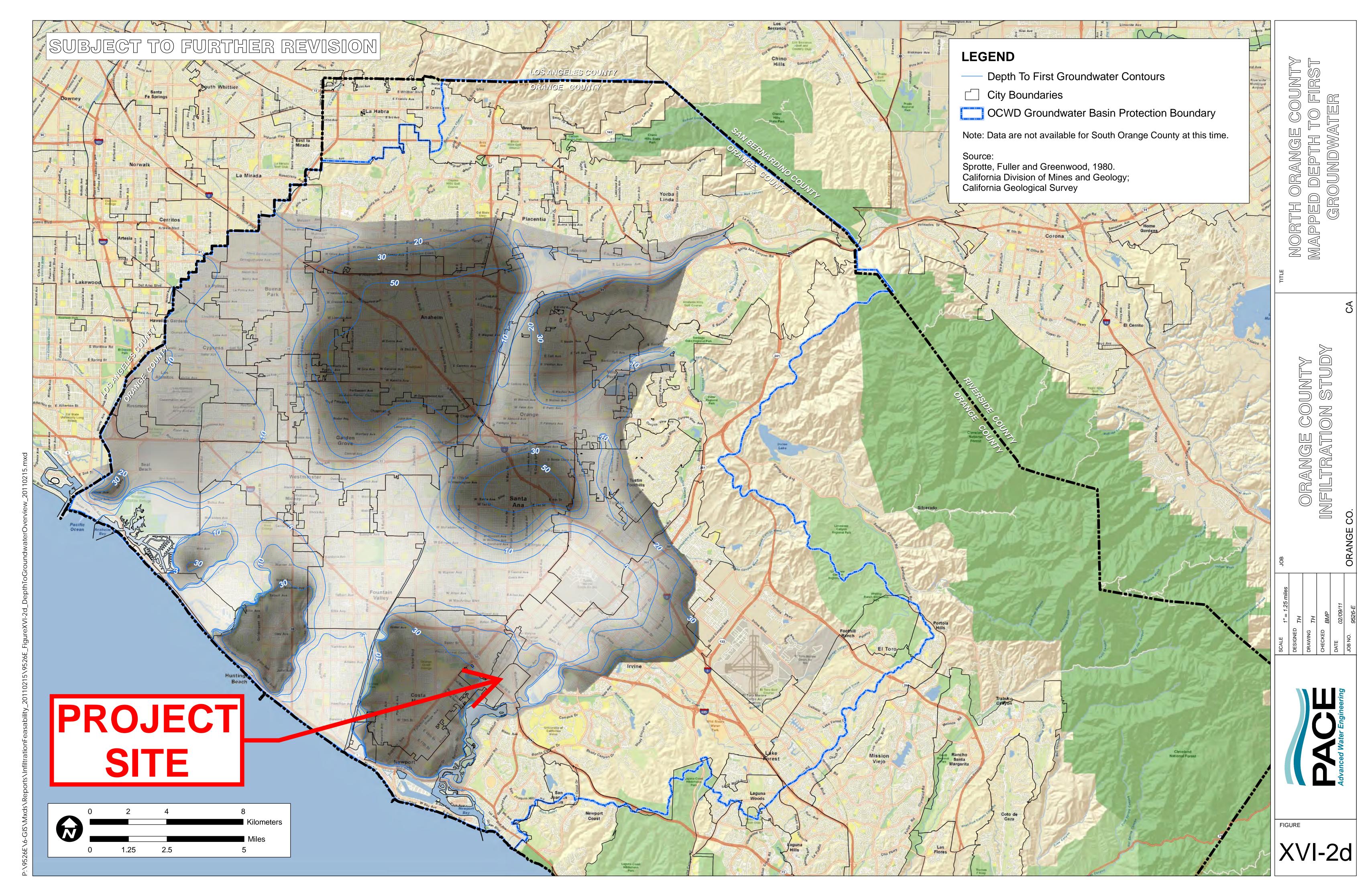
PERMAVOID INLET DETAIL - PVIOC-109

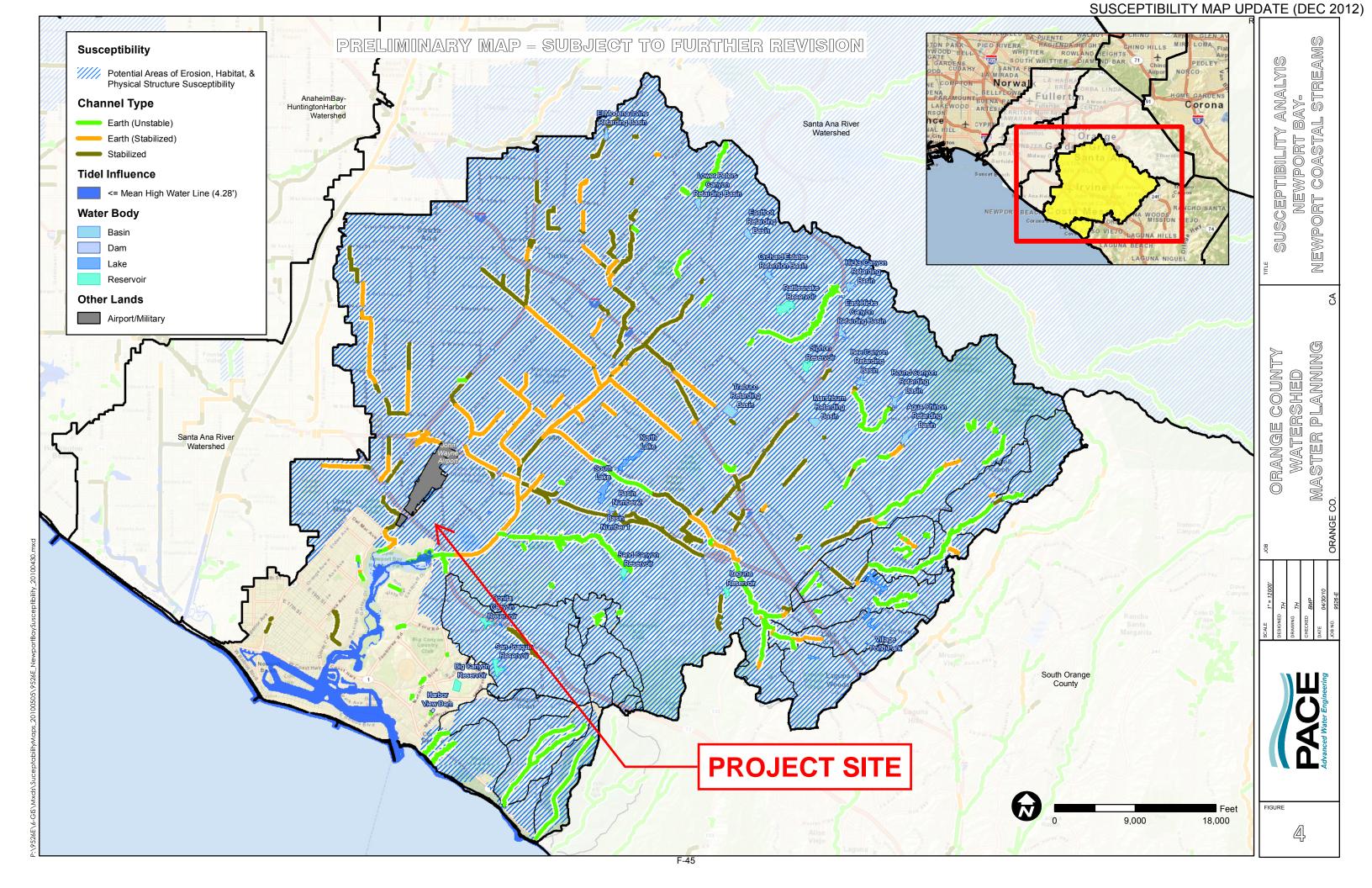


PERMAVOID INLET DETAIL - PVIOC-101

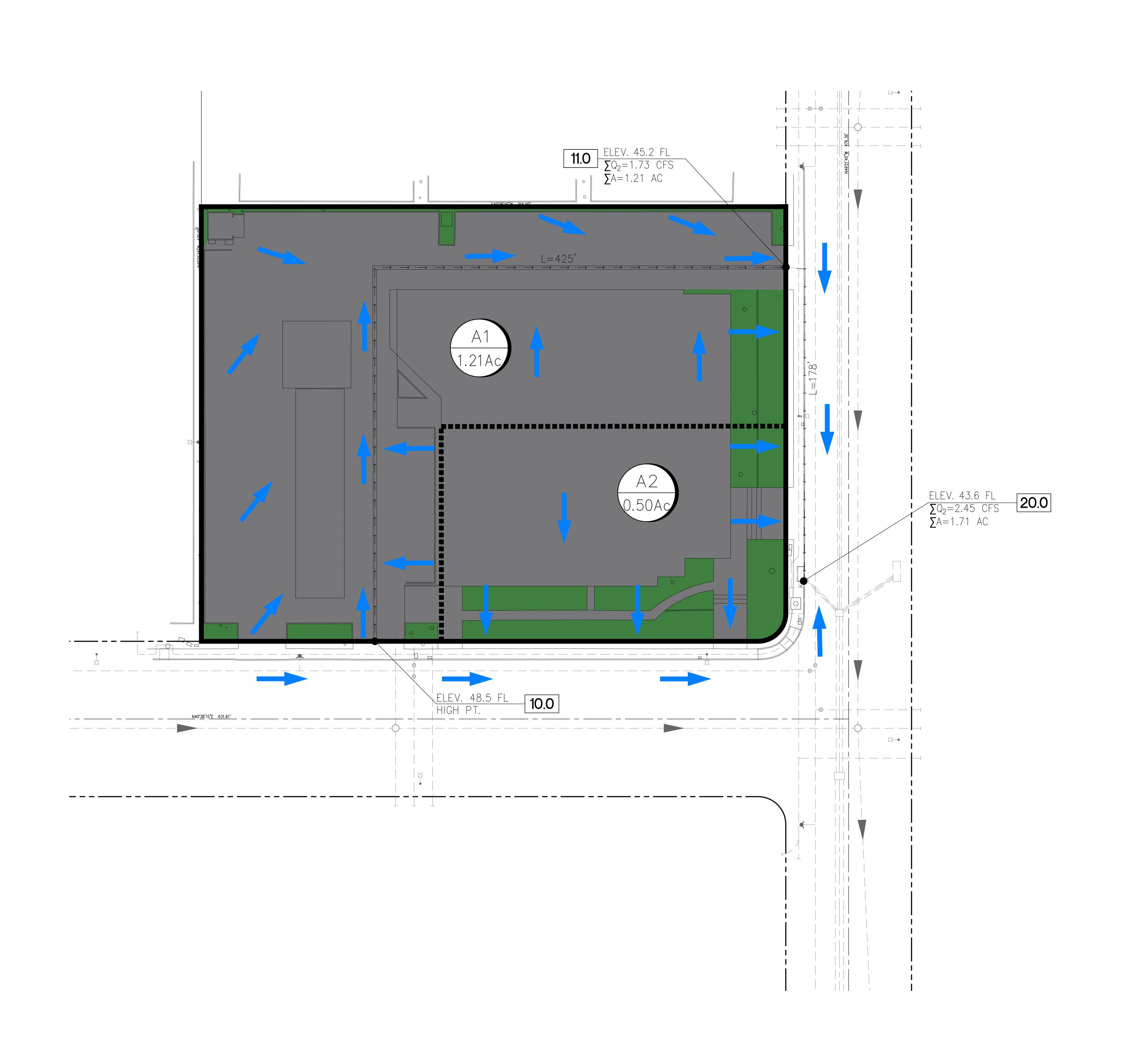



NOTES:

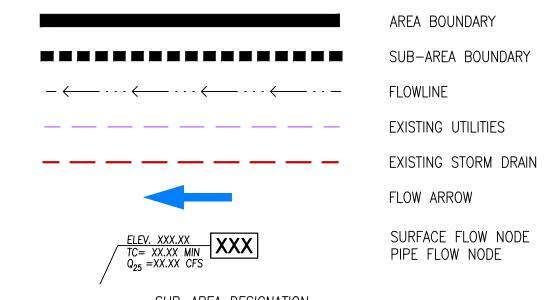

2. Water fed through direct pipe connections to Permavoid is not eligible for biofiltration.


^{1.} All direct pipe connections to Permavoid systems shall have pre-treatment measures to prevent sedimentation such as ABT FirstFlush or approved alternates.

ATTACHMENT C ORANGE COUNTY RAINFALL ZONES MAP



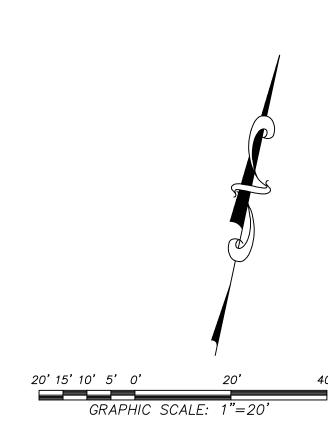
ATTACHMENT D Drainage Map and Calculations


	EXISTING CONDITI	ON 2—YEAR STOR	M
TOTAL AREA (AC)	PEAK FLOW (CFS)	TC (MINUTES)	VOLUME (CUBIC FT)
1.71	2.45	9.04	6,316

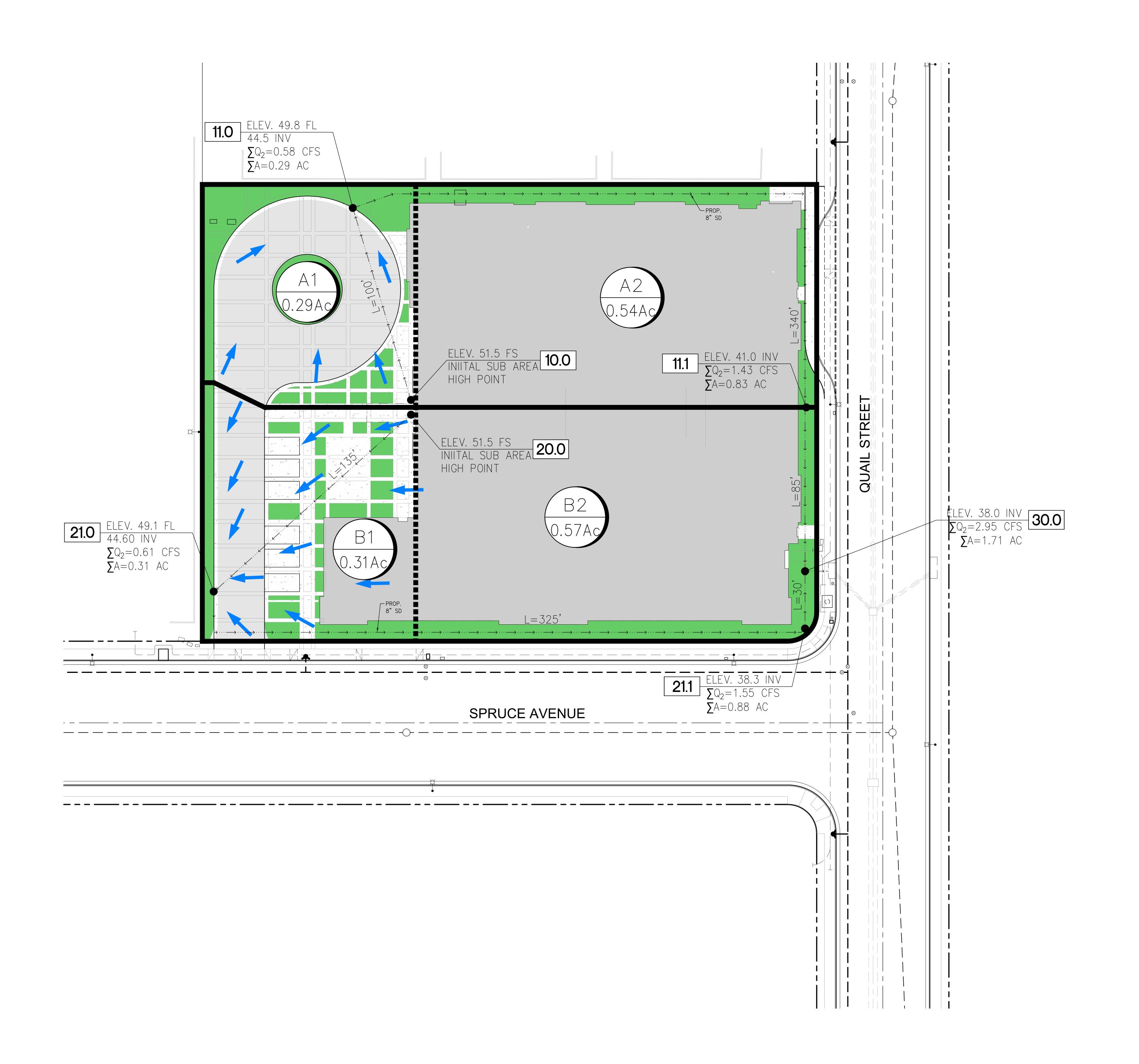
AREA CALCULATIONS:

TOTAL IMPERVIOUS AREA = 64,152 SF = 1.47 AC TOTAL PERVIOUS AREA = 10,060 SF = 0.24 AC TOTAL AREA = 74,212 SF = 1.71 AC

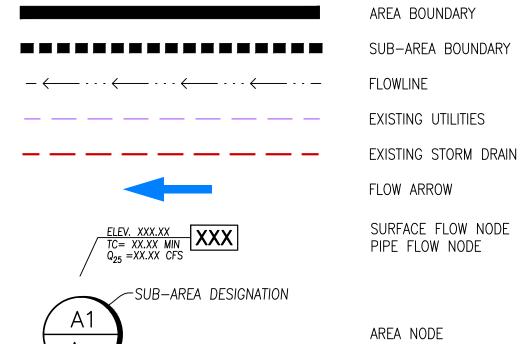
PERCENT IMPERVIOUS: 86.4% PERCENT PERVIOUS: 13.6%

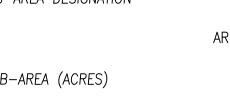

LEGEND

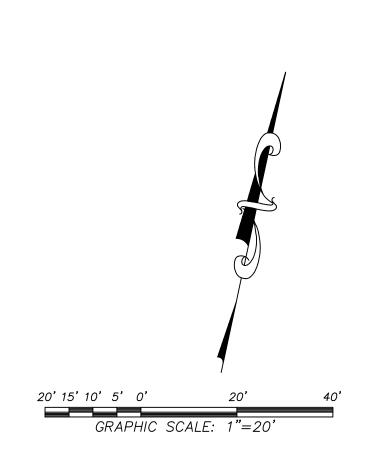
SUB-AREA DESIGNATION


FLOW ARROW SURFACE FLOW NODE PIPE FLOW NODE

1401 QUAIL STREET PRE-CONSTRUCTION HYDROLOGY MAP SHEET 1 OF 2


	DEVELOPED CONDI	TION 2—YEAR STC	PRM
TOTAL AREA (AC)	PEAK FLOW (CFS)	TC (MINUTES)	VOLUME (CUBIC FT)
1.71	2.95	6.3	6,011


AREA CALCULATIONS:


TOTAL IMPERVIOUS AREA = 62,043 SF = 1.42 AC TOTAL PERVIOUS AREA = 12,169 SF = 0.29 AC TOTAL AREA = 74,212 SF = 1.71 AC

PERCENT IMPERVIOUS: 83.6%
PERCENT PERVIOUS: 16.4%

LEGEND

1401 QUAIL STREET POST-CONSTRUCTION HYDROLOGY MAP

************************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 * PRE-DEVELOPMENT * 2 YEAR STORM ANALYSIS * 22-2434 QUAIL 1401 FILE NAME: 2434E.DAT TIME/DATE OF STUDY: 10:21 12/13/2022 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (N) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *PIPE MAY BE SIZED TO HAVE A FLOW CAPACITY LESS THAN **UPSTREAM TRIBUTARY PIPE.*** *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED *************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
INITIAL SUBAREA FLOW-LENGTH(FEET) = 425.00
ELEVATION DATA: UPSTREAM(FEET) = 48.50 DOWNSTREAM(FEET) = 45.20
Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.041
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.611
SUBAREA Tc AND LOSS RATE DATA(AMC 1):
                                     Ap SCS Tc
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
  LAND USE
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
                           0.20 0.100 57 9.04
COMMERCIAL
                     1.21
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA RUNOFF(CFS) = 1.73
TOTAL AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) = 1.73
********************************
FLOW PROCESS FROM NODE 11.00 TO NODE 20.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
MAINLINE Tc(MIN.) = 9.04
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.611
SUBAREA LOSS RATE DATA(AMC I):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                     Ap SCS
  LAND USE
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL
                     0.50 0.20 0.100 57
                 D
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.72
EFFECTIVE AREA(ACRES) = 1.71 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
TOTAL AREA(ACRES) = 1.7
                        PEAK FLOW RATE(CFS) =
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.7 TC(MIN.) = 9.04
EFFECTIVE AREA(ACRES) = 1.71 AREA-AVERAGED Fm(INCH/HR)= 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.100
PEAK FLOW RATE(CFS) =
                     2.45
_______
```

F-50

END OF RATIONAL METHOD ANALYSIS

SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204

Analysis prepared by:

Problem Descriptions:
PRE-DEVELOPMENT HYDROGRAPH
2 YEAR STORM ANALYSIS
22-2434 QUAIL 1401

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 1.71

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.020

LOW LOSS FRACTION = 0.250

TIME OF CONCENTRATION (MIN.) = 9.04

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY (YEARS) = 2

5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.19

30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40

1-HOUR POINT RAINFALL VALUE (INCHES) = 0.53

3-HOUR POINT RAINFALL VALUE(INCHES) = 0.89 6-HOUR POINT RAINFALL VALUE(INCHES) = 1.22

24-HOUR POINT RAINFALL VALUE (INCHES) = 2.05

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 0.22
TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 0.07

*****	*****	*****	****	******	*****	******	*****
TIME (HOURS)	VOLUME (AF)	Q (CFS)	0.	2.5	5.0	7.5	10.0
0.03	0.0000	0.00	Q				
0.18	0.0002	0.04	Q	•		•	•
0.33	0.0007	0.04	Q	•	•	•	•
0.48	0.0012	0.04	Q				
0.63	0.0016	0.04	Q	•			
0.78	0.0021	0.04	Q	•			
0.93	0.0026	0.04	Q	•			
1.08	0.0030	0.04	Q	•			
1.23	0.0035	0.04	Q	•			
1.39	0.0040	0.04	Q	•			
1.54	0.0045	0.04	Q	•			
1.69	0.0050	0.04	Q	•	•	•	•
1.84	0.0055	0.04	Q	•	•	•	•
1.99	0.0060	0.04	Q	•	•	•	

2.14							
	0.0065	0.04	\cap				
			Q	•	•	•	•
2.29	0.0070	0.04	Q	•	•		
2.44	0.0075	0.04	Q				
				•	•	•	•
2.59	0.0080	0.04	Q	•	•		
2.74	0.0085	0.04	Q				
				•	•	•	•
2.89	0.0090	0.04	Q	•	•	•	
3.04	0.0095	0.04	Q				
				•	•	•	•
3.19	0.0101	0.04	Q		•		
3.34	0.0106	0.04					
			Q	•	•	•	•
3.49	0.0111	0.04	Q		•		
3.65	0.0116	0.04					
			Q	•	•	•	•
3.80	0.0122	0.04	Q		•		
3.95	0.0127	0.04					
			Q	•	•	•	•
4.10	0.0133	0.04	Q		•		
4.25	0.0138	0.04					
			Q	•	•	•	•
4.40	0.0144	0.04	Q		•		
4.55	0.0149	0.05					
			Q	•	•	•	•
4.70	0.0155	0.05	Q		•		
4.85	0.0161	0.05					
			Q	•	•	•	•
5.00	0.0167	0.05	Q		•		
5.15	0.0172	0.05	Q				
				•	•	•	•
5.30	0.0178	0.05	Q	•	•	•	
5.45	0.0184	0.05	Q				
				•	•	•	•
5.60	0.0190	0.05	Q	•	•	•	
5.75	0.0196	0.05	Q				
				•	•	•	•
5.91	0.0202	0.05	Q	•	•	•	
6.06	0.0208	0.05	Q				
				•	•	•	•
6.21	0.0214	0.05	Q	•	•	•	
6.36	0.0221	0.05	Q				
				•	•	•	•
6 67	0.0227	0.05	Q	•	•		
6.51	0.0227	0.00					
6.66	0.0233	0.05	Q		•	•	•
				•	•		
6.66 6.81	0.0233 0.0240	0.05 0.05	Q Q				
6.66 6.81 6.96	0.0233 0.0240 0.0246	0.05 0.05 0.05	Q Q Q	•	· ·	• •	· ·
6.66 6.81	0.0233 0.0240	0.05 0.05	Q Q	•	· · ·		
6.66 6.81 6.96 7.11	0.0233 0.0240 0.0246 0.0253	0.05 0.05 0.05 0.05	Q Q Q Q				
6.66 6.81 6.96 7.11 7.26	0.0233 0.0240 0.0246 0.0253 0.0259	0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q				· · · · ·
6.66 6.81 6.96 7.11	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266	0.05 0.05 0.05 0.05	Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266	0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41 7.56	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273	0.05 0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280	0.05 0.05 0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280	0.05 0.05 0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q Q Q				: : : : :
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06	Q Q Q Q Q Q Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293	0.05 0.05 0.05 0.05 0.05 0.05 0.05	Q Q Q Q Q Q Q				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06		· · · · · · · · · · · ·			
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06		· · · · · · · · · · · · · · · · · ·			
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	000000000000000000000000000000000000000				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	9999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	9999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	9999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	99999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368 0.0376	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	9999999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67 9.82	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0345 0.0353 0.0360 0.0368 0.0376 0.0385	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	99999999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368 0.0376	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	9999999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.62 8.77 8.92 9.07 9.22 9.37 9.22 9.37 9.52 9.82 9.97	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0368 0.0376 0.0385 0.0393	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	999999999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67 9.82 9.97 10.12	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368 0.0376 0.0385 0.0393 0.0401	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	000000000000000000000000000000000000000				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.62 8.77 8.92 9.07 9.22 9.37 9.22 9.37 9.52 9.82 9.97	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0368 0.0376 0.0385 0.0393	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	999999999999999999999				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67 9.82 9.97 10.12 10.27	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368 0.0376 0.0385 0.0393 0.0401 0.0410	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	900000000000000000000000000000000000000				
6.66 6.81 6.96 7.11 7.26 7.41 7.56 7.71 7.86 8.01 8.17 8.32 8.47 8.62 8.77 8.92 9.07 9.22 9.37 9.52 9.67 9.82 9.97 10.12	0.0233 0.0240 0.0246 0.0253 0.0259 0.0266 0.0273 0.0280 0.0286 0.0293 0.0300 0.0308 0.0315 0.0322 0.0330 0.0337 0.0345 0.0353 0.0360 0.0368 0.0376 0.0385 0.0393 0.0401	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	000000000000000000000000000000000000000				

10.73	0.0436	0.07	Q				
10.88	0.0445	0.07		•	•	•	•
			Q	•	•	•	•
11.03	0.0455	0.08	Q	•	•	•	•
11.18	0.0464	0.08	Q	•	•	•	•
11.33	0.0474	0.08	Q	•	•	•	•
11.48	0.0484	0.08	Q	•	•	•	•
11.63	0.0494	0.08	Q	•	•	•	•
11.78	0.0504	0.08	Q	•	•	•	•
11.93	0.0515	0.09	Q				•
12.08	0.0525	0.09	Q		•		•
12.23	0.0538	0.11	Q				•
12.38	0.0552	0.12	Q				
12.53	0.0567	0.12	Q			-	
12.69	0.0582	0.12	Q	·	•	·	•
12.84	0.0598	0.13	Q	•	•	•	•
12.99	0.0614	0.13		•	•	•	•
			Q	•	•	•	•
13.14	0.0631	0.14	Q	•	•	•	•
13.29	0.0648	0.14	Q	•	•	•	•
13.44	0.0666	0.15	Q	•	•	•	•
13.59	0.0684	0.15	Q	•	•	•	•
13.74	0.0704	0.16	Q	•	•		•
13.89	0.0724	0.16	Q				•
14.04	0.0745	0.17	Q		•		•
14.19	0.0767	0.19	Q				
14.34	0.0791	0.20	Q	_		_	
14.49	0.0817	0.21	Q	·	·	·	·
14.64	0.0843	0.22	Q	•	•	•	•
14.79	0.0872	0.23		•	•	•	•
			Q	•	•	•	•
14.95	0.0902	0.26	• Q	•	•	•	•
15.10	0.0935	0.27	.Q	•	•	•	•
15.25	0.0971	0.31	.Q	•	•	•	•
15.40	0.1011	0.33	.Q	•	•	•	•
15.55	0.1053	0.34	.Q	•	•	•	•
15.70	0.1098	0.39	. Q	•	•	•	
15.85	0.1158	0.58	. Q	•	•		
16.00	0.1244	0.80	. Q				
16.15	0.1446	2.45		Q.			•
16.30	0.1627	0.46	.Q				
16.45	0.1676	0.32	.Q	_	_	_	_
16.60	0.1714	0.29	.Q	·	·	•	-
16.75	0.1747	0.24	Q	•	•	•	•
16.90	0.1776	0.22	Q	•	•	•	•
				•	•	•	•
17.05	0.1801	0.19	Q	•	•	•	•
17.21	0.1824	0.17	Q	•	•	•	•
17.36	0.1844	0.15	Q	•	•	•	•
17.51	0.1862	0.14	Q	•	•	•	•
17.66	0.1880	0.13	Q	•	•	•	•
17.81	0.1896	0.13	Q	•	•		•
17.96	0.1911	0.12	Q				
18.11	0.1925	0.11	Q		•		
18.26	0.1937	0.08	Q				
18.41	0.1947	0.08	Q	-		-	-
18.56	0.1957	0.08	Q	•	•	•	•
18.71	0.1967	0.07	Q	•	•	•	•
18.86				•	•	•	•
	0.1976	0.07	Q	•	•	•	•
19.01	0.1985	0.07	Q	•	•	•	•
19.16	0.1993	0.07	Q	•	•	•	•

19.31 19.47 19.62 19.77 19.92 20.07 20.22 20.37 20.52 20.67 20.82 20.97 21.12 21.27 21.42 21.57 21.73 21.88 22.03 22.18	0.2002 0.2010 0.2017 0.2025 0.2032 0.2040 0.2047 0.2054 0.2060 0.2067 0.2074 0.2080 0.2086 0.2092 0.2098 0.2104 0.2110 0.2116 0.2121	0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05					
			Q	•	•	•	•
			Q	•	•	•	•
21.27	0.2092	0.05	Q	•		•	•
21.42	0.2098	0.05	Q	•			
21.57	0.2104	0.05	Q	•	•	•	•
	0.2110	0.05	Q	•	•	•	•
	0.2116		Q	•	•	•	•
			Q	•	•	•	•
				•	•	•	•
22.33	0.2132	0.04	Q	•	•	•	•
22.48	0.2138	0.04	Q	•	•	•	•
22.63	0.2143	0.04	Q	•	•	•	•
22.78	0.2148	0.04	Q	•	•	•	•
22.93	0.2153	0.04	Q	•	•	•	•
23.08	0.2158	0.04	Q	•	•	•	•
23.23	0.2163	0.04	Q	•	•	•	•
23.38	0.2168	0.04	Q	•	•	•	•
23.53	0.2173	0.04	Q	•	•	•	•
23.68	0.2178	0.04	Q	•	•	•	•
23.83	0.2182	0.04	Q	•	•	•	•
23.99	0.2187	0.04	Q	•	•	•	•
24.14	0.2192	0.04	Q	•	•	•	•
24.29	0.2194	0.00	Q	•	•	•	•

************************************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 Analysis prepared by: * POST-DEVELOPMENT * 2 YEAR STORM ANALYSIS * 22-2434 QUAIL 1401 ************************* FILE NAME: 2434P.DAT TIME/DATE OF STUDY: 17:40 12/12/2022 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *PIPE MAY BE SIZED TO HAVE A FLOW CAPACITY LESS THAN **UPSTREAM TRIBUTARY PIPE.*** *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

```
FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
  .....
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
ELEVATION DATA: UPSTREAM(FEET) = 51.50 DOWNSTREAM(FEET) = 49.80
Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
SUBAREA Tc AND LOSS RATE DATA(AMC 1):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                    Ap SCS Tc
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
  LAND USE
                         0.20 0.200 57 5.00
APARTMENTS
                D
                     0.29
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
SUBAREA RUNOFF(CFS) = 0.58
TOTAL AREA(ACRES) = 0.29 PEAK FLOW RATE(CFS) = 0.58
   **************************
FLOW PROCESS FROM NODE 11.00 TO NODE 11.10 IS CODE = 41
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
ELEVATION DATA: UPSTREAM(FEET) = 44.50 DOWNSTREAM(FEET) = 41.00
FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.011
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.87
GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) =
               0.58
PIPE TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 6.46
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 11.10 = 440.00 FEET.
FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
MAINLINE Tc(MIN.) = 6.46
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.954
SUBAREA LOSS RATE DATA(AMC I):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                    Ap SCS
```

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN **APARTMENTS** D 0.54 0.20 0.200 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) = 0.54 SUBAREA RUNOFF(CFS) = 0.93 EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20TOTAL AREA(ACRES) = 0.8PEAK FLOW RATE(CFS) = 1.43 ***************************** FLOW PROCESS FROM NODE 11.10 TO NODE 30.00 IS CODE = 41 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)< ______ ELEVATION DATA: UPSTREAM(FEET) = 41.00 DOWNSTREAM(FEET) = 38.00 FLOW LENGTH(FEET) = 84.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 8.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.24 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.43 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 6.63LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 524.00 FEET. ****************************** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 10 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<< ______ ********************************** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 13 _____ >>>>CLEAR THE MAIN-STREAM MEMORY< ______ ******************************* FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 135.00 ELEVATION DATA: UPSTREAM(FEET) = 51.50 DOWNSTREAM(FEET) = 49.10

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.161
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.223
SUBAREA Tc AND LOSS RATE DATA(AMC 1):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
  LAND USE
APARTMENTS
                 D
                      0.31
                          0.20 0.200 57 5.16
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
SUBAREA RUNOFF(CFS) = 0.61
TOTAL AREA(ACRES) = 0.31 PEAK FLOW RATE(CFS) = 0.61
FLOW PROCESS FROM NODE 21.00 TO NODE 21.10 IS CODE = 41
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
ELEVATION DATA: UPSTREAM(FEET) = 44.60 DOWNSTREAM(FEET) = 38.30
FLOW LENGTH(FEET) = 325.00 MANNING'S N = 0.010
DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.26
GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) =
                0.61
PIPE TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 6.19
LONGEST FLOWPATH FROM NODE 20.00 TO NODE 21.10 = 460.00 FEET.
******************************
FLOW PROCESS FROM NODE 21.10 TO NODE 21.10 IS CODE = 81
   .....
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
MAINLINE Tc(MIN.) = 6.19
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.002
SUBAREA LOSS RATE DATA(AMC 1):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                      Ap SCS
  LAND USE
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                 D
                      0.57 0.20 0.200 57
APARTMENTS
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 1.01
EFFECTIVE AREA(ACRES) = 0.88 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
```

TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 1.55

FLOW PROCESS FROM NODE 21.10 TO NODE 30.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<>>>>

ELEVATION DATA: UPSTREAM(FEET) = 38.30 DOWNSTREAM(FEET) = 38.00 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.010

ASSUME FULL-FLOWING PIPELINE

PIPE-FLOW VELOCITY(FEET/SEC.) = 4.45

PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)

GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 1.55

PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 6.30

LONGEST FLOWPATH FROM NODE 20.00 TO NODE 30.00 = 490.00 FEET.

FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 11

>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<

** MAIN STREAM CONFLUENCE DATA **

STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 1.55 6.30 1.982 0.20(0.04) 0.20 0.9 20.00

LONGEST FLOWPATH FROM NODE 20.00 TO NODE 30.00 = 490.00 FEET.

** MEMORY BANK # 1 CONFLUENCE DATA **

STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 1.43 6.63 1.925 0.20(0.04) 0.20 0.8 10.00

LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 524.00 FEET.

** PEAK FLOW RATE TABLE **

STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 2.95 6.30 1.982 0.20(0.04) 0.20 1.7 20.00 2 2.94 6.63 1.925 0.20(0.04) 0.20 1.7 10.00

TOTAL AREA(ACRES) = 1.7

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 2.95 Tc(MIN.) = 6.303 EFFECTIVE AREA(ACRES) = 1.67 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.7 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 524.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 1.7 TC(MIN.) = 6.30 EFFECTIVE AREA(ACRES) = 1.67 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 2.95

** PEAK FLOW RATE TABLE **

STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 2.95 6.30 1.982 0.20(0.04) 0.20 1.7 20.00

2 2.94 6.63 1.925 0.20(0.04) 0.20 1.7 10.00

END OF RATIONAL METHOD ANALYSIS

SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204

Analysis prepared by:

Problem Descriptions:
POST-DEVELOPMENT HYDROGRAPH
2 YEAR STORM ANALYSIS
22-2434 QUAIL 1401

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 1.71

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.040

LOW LOSS FRACTION = 0.250

TIME OF CONCENTRATION (MIN.) = 6.30

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY (YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.19

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

1-HOUR POINT RAINFALL VALUE (INCHES) = 0.53

3-HOUR POINT RAINFALL VALUE(INCHES) = 0.89 6-HOUR POINT RAINFALL VALUE(INCHES) = 1.22

24-HOUR POINT RAINFALL VALUE (INCHES) = 2.05

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 0.21
TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 0.08

TIME (HOURS)	VOLUME (AF)	Q (CFS)	0.	2.5	5.0	7.5	10.0	
0.04	0.0000	0.00	Q					
0.14	0.0002	0.04	Q	•	•	•	•	
0.25	0.0005	0.04	Q				•	
0.35	0.0008	0.04	Q	•			•	
0.46	0.0011	0.04	Q	•			•	
0.56	0.0015	0.04	Q	•			•	
0.67	0.0018	0.04	Q		•	•	•	
0.77	0.0021	0.04	Q		•			
0.88	0.0024	0.04	Q	•	•	•	•	

0.98	0.0028	0.04	Q				
1.09	0.0023	0.04		•	•	•	•
			Q	•	•	•	•
1.19	0.0034	0.04	Q	•	•	•	•
1.30	0.0038	0.04	Q	•	•	•	•
1.40	0.0041	0.04	Q	•	•	•	•
1.51	0.0045	0.04	Q	•	•	•	•
1.61	0.0048	0.04	Q	•	•	•	•
1.72	0.0051	0.04	Q				
1.82	0.0055	0.04	Q		•	•	
1.93	0.0058	0.04	Q	•	•		
2.03	0.0062	0.04	Q				
2.14	0.0065	0.04	Q	_	_	_	
2.24	0.0069	0.04	Q	•	•	•	·
2.35	0.0072	0.04	Q	•	•	•	•
2.45	0.0072	0.04		•	•	•	•
			Q	•	•	•	•
2.56	0.0079	0.04	Q	•	•	•	•
2.66	0.0083	0.04	Q	•	•	•	•
2.77	0.0086	0.04	Q	•	•	•	•
2.87	0.0090	0.04	Q	•	•	•	
2.98	0.0094	0.04	Q	•	•	•	
3.08	0.0097	0.04	Q	•	•	•	
3.19	0.0101	0.04	Q				
3.29	0.0105	0.04	Q	_	_	_	
3.40	0.0108	0.04	Q	•	•	•	•
3.50	0.0112	0.04	Q	•	•	•	•
3.61	0.0112			•	•	•	•
		0.04	Q	•	•	•	•
3.71	0.0119	0.04	Q	•	•	•	•
3.82	0.0123	0.04	Q	•	•	•	•
3.92	0.0127	0.04	Q	•	•	•	•
4.03	0.0131	0.04	Q	•	•	•	
4.13	0.0135	0.04	Q	•	•	•	
4.24	0.0139	0.04	Q		•	•	
4.34	0.0142	0.04	Q				
4.45	0.0146	0.05	Q	_	_	_	
4.55	0.0150	0.05	Q	•	•	•	·
4.66	0.0154	0.05	Q	•	•	•	•
4.76	0.0154	0.05		•	•	•	•
			Q	•	•	•	•
4.87	0.0162	0.05	Q	•	•	•	•
4.97	0.0166	0.05	Q	•	•	•	•
5.08	0.0170	0.05	Q	•	•	•	•
5.18	0.0174	0.05	Q	•	•	•	•
5.29	0.0178	0.05	Q	•	•	•	•
5.39	0.0182	0.05	Q	•	•	•	
5.50	0.0187	0.05	Q	•			
5.61	0.0191	0.05	Q				
5.71	0.0195	0.05	Q	•			
5.82	0.0199	0.05	Q	_	_	_	
5.92	0.0203	0.05	Q	•	•	•	•
6.02	0.0208	0.05	Q	•	•	•	•
6.13	0.0212	0.05		•	•	•	•
			Q	•	•	•	•
6.23	0.0216	0.05	Q	•	•	•	•
6.34	0.0221	0.05	Q	•	•	•	•
6.44	0.0225	0.05	Q	•	•	•	•
6.55	0.0229	0.05	Q	•	•	•	•
6.65	0.0234	0.05	Q	•	•	•	
6.76	0.0238	0.05	Q	•	•	•	
6.86	0.0243	0.05	Q	•	•	•	

6.97	0.0247	0.05	Q				
7.07	0.0252	0.05	Q	•	•	•	•
7.18	0.0257	0.05	Q	•	•		•
7.28	0.0261	0.05	Q	•	•	•	•
7.39	0.0266	0.05	Q	•	•	•	•
7.49	0.0271	0.05	Q	•	•		
7.60	0.0275	0.05	Q	•	•	•	•
7.70	0.0280	0.06	Q	•	•		•
7.81	0.0285	0.06	Q	•	•		
7.91	0.0290	0.06	Q	•	•		•
8.02	0.0295	0.06	Q	•	•		•
8.12	0.0300	0.06	Q	•	•		•
8.23	0.0305	0.06	Q	•	•		
8.34	0.0310	0.06	Q	•	•		
8.44	0.0315	0.06	Q	•	•		
8.55	0.0320	0.06	Q	•	•		
8.65	0.0325	0.06	Q	•	•		
8.76	0.0330	0.06	Q	•			
8.86	0.0335	0.06	Q	•			
8.96	0.0341	0.06	Q	•	•		
9.07	0.0346	0.06	Q	•			
9.18	0.0351	0.06	Q	•			
9.28	0.0357	0.06	Q				
9.38	0.0362	0.06	Q				
9.49	0.0368	0.06	Q				
9.60	0.0373	0.07	Q				
9.70	0.0379	0.07	Q				
9.80	0.0385	0.07	Q	•	•		
9.91	0.0391	0.07	Q	•	•		
10.01	0.0396	0.07	Q	•			
10.12	0.0402	0.07	Q	•	•		
10.23	0.0408	0.07	Q	•			
10.33	0.0414	0.07	Q	•			
10.43	0.0420	0.07	Q	•	•		
10.54	0.0427	0.07	Q	•	•		
10.65	0.0433	0.07	Q	•			
10.75	0.0439	0.07	Q	•			
10.85	0.0446	0.07	Q	•	•		
10.96	0.0452	0.08	Q	•	•		
11.06	0.0459	0.08	Q	•			
11.17	0.0465	0.08	Q	•	•		
11.27	0.0472	0.08	Q	•	•		
11.38	0.0479	0.08	Q		•		
11.48	0.0486	0.08	Q	•	•		
11.59	0.0493	0.08	Q	•			
11.70	0.0500	0.08	Q	•			
11.80	0.0507	0.08	Q	•			
11.90	0.0515	0.09	Q	•			
12.01	0.0522	0.09	Q	•			
12.11	0.0531	0.11	Q	•	•		
12.22	0.0540	0.11	Q	•			
12.32	0.0549	0.11	Q	•			
12.43	0.0559	0.11	Q	•			
12.53	0.0569	0.11	Q	•	•		
12.64	0.0579	0.12	Q	•			
12.74	0.0589	0.12	Q	•			
12.85	0.0599	0.12	Q		•		

12.95 13.06	0.0610 0.0620	0.12	Q Q				
13.16	0.0631	0.13	Q	•			
13.27	0.0642	0.13	Q	•	•	•	•
13.38	0.0654	0.13	Q	•	•	•	•
13.48	0.0665	0.13	Q	•	•	•	•
13.59	0.0677	0.14	Q	•	•	•	•
13.69	0.0689	0.14	Q	•	•	•	•
13.80 13.90	0.0702	0.15	Q	•	•	•	•
14.01	0.0714 0.0727	0.15 0.15	Q	•	•	•	•
14.11	0.0727	0.16	Q Q	•	•	•	•
14.22	0.0755	0.17	Q	•	•	•	•
14.32	0.0770	0.17	Q		•		:
14.43	0.0785	0.18	Q	•	•	•	
14.53	0.0801	0.18	Q				•
14.63	0.0817	0.20	Q	•			
14.74	0.0835	0.20	Q		•		•
14.85	0.0853	0.22	Q	•	•	•	
14.95	0.0872	0.23	Q	•	•	•	•
15.05	0.0893	0.25	Q	•	•	•	•
15.16	0.0914	0.26	. Q	•	•	•	•
15.27	0.0938	0.29	.Q	•	•	•	•
15.37 15.48	0.0964 0.0990	0.30	•Q	•	•	•	•
15.48	0.1016	0.29	.Q .Q	•	•	•	•
15.68	0.1010	0.40	. Q	•	•	•	•
15.79	0.1085	0.47	.Q	•	•	•	•
15.90	0.1135	0.69	. Q		•		:
16.00	0.1207	0.96	. Q	•	•	•	
16.10	0.1379	3.00		. Q	•		
16.21	0.1533	0.55	. Q	•			
16.32	0.1572	0.35	• Q	•	•	•	•
16.42	0.1601	0.30	• Q	•	•	•	•
16.52	0.1625	0.27	• Q	•	•	•	•
16.63	0.1647	0.24	Q	•	•	•	•
16.73	0.1667	0.21	Q	•	•	•	•
16.84	0.1684 0.1700	0.19	Q	•	•	•	•
16.94 17.05	0.1700	0.18 0.16	Q	•	•	•	•
17.16	0.1714	0.15	Q Q	•	•	•	•
17.26	0.1741	0.14	Q	•			•
17.36	0.1753	0.14	Q	•	•	•	
17.47	0.1764	0.13	Q	•	•		•
17.58	0.1776	0.13	Q	•	•		
17.68	0.1786	0.12	Q		•		•
17.78	0.1797	0.12	Q	•	•	•	
17.89	0.1807	0.11	Q	•	•	•	•
17.99	0.1816	0.11	Q	•	•	•	•
18.10	0.1825	0.09	Q	•	•	•	•
18.20	0.1832	0.08	Q	•	•	•	•
18.31 18.42	0.1840	0.08	Q	•	•	•	•
18.42	0.1847 0.1854	0.08	Q Q	•	•	•	•
18.62	0.1860	0.08	Q	•	•	•	•
18.73	0.1867	0.07	Q	•	•		•
18.83	0.1873	0.07	Q	•	•	•	•

18.94	0.1879	0.07	Q	•	•	•	•
19.05	0.1885	0.07	Q	•	•	•	•
19.15	0.1891	0.07	Q	•	•	•	•
19.26	0.1897	0.07	Q	•	•	•	•
19.36	0.1903	0.06	Q	•	•	•	•
19.47	0.1908	0.06	Q	•	•	•	
19.57	0.1914	0.06	Q	•	•		
19.67	0.1919	0.06	Q			•	•
19.78	0.1924	0.06	Q			•	•
19.89	0.1929	0.06	Q				
19.99	0.1934	0.06	Q	•			
20.09	0.1939	0.06	Q				
20.20	0.1944	0.06	Q	_	_	_	_
20.31	0.1949	0.06	Q			_	_
20.41	0.1954	0.05	Q			_	_
20.52	0.1959	0.05	Q	•	·	•	•
20.62	0.1963	0.05	Q	•	•	•	•
20.73	0.1968	0.05	Q	•	•	•	•
20.73	0.1900	0.05	Q	•	•	•	•
20.93	0.1977	0.05	Q	•	•	•	•
21.04	0.1977	0.05		•	•	•	•
21.14	0.1985	0.05	Q	•	•	•	•
21.14	0.1989		Q	•	•	•	•
		0.05	Q	•	•	•	•
21.36	0.1994	0.05	Q	•	•	•	•
21.46	0.1998	0.05	Q	•	•	•	•
21.57	0.2002	0.05	Q	•	•	•	•
21.67	0.2006	0.05	Q	•	•	•	•
21.77	0.2010	0.05	Q	•	•	•	•
21.88	0.2014	0.05	Q	•	•	•	•
21.98	0.2018	0.04	Q	•	•	•	•
22.09	0.2022	0.04	Q	•	•	•	•
22.19	0.2025	0.04	Q	•	•	•	•
22.30	0.2029	0.04	Q	•	•	•	•
22.41	0.2033	0.04	Q	•	•	•	•
22.51	0.2037	0.04	Q	•	•	•	•
22.61	0.2040	0.04	Q	•	•	•	•
22.72	0.2044	0.04	Q	•	•	•	•
22.83	0.2047	0.04	Q	•	•	•	•
22.93	0.2051	0.04	Q	•	•	•	
23.03	0.2055	0.04	Q	•	•	•	•
23.14	0.2058	0.04	Q	•	•		
23.25	0.2061	0.04	Q				
23.35	0.2065	0.04	Q	•	•	•	
23.45	0.2068	0.04	Q	•	•	•	
23.56	0.2072	0.04	Q				
23.67	0.2075	0.04	Q	•			
23.77	0.2078	0.04	Q			•	
23.88	0.2081	0.04	Q		•	•	
23.98	0.2085	0.04	Q		•	•	
24.08	0.2088	0.04	Q			•	
24.19	0.2090	0.00	Q				
			z.	•	•	-	-

F-65

ATTACHMENT E
INFILTRATION STUDY

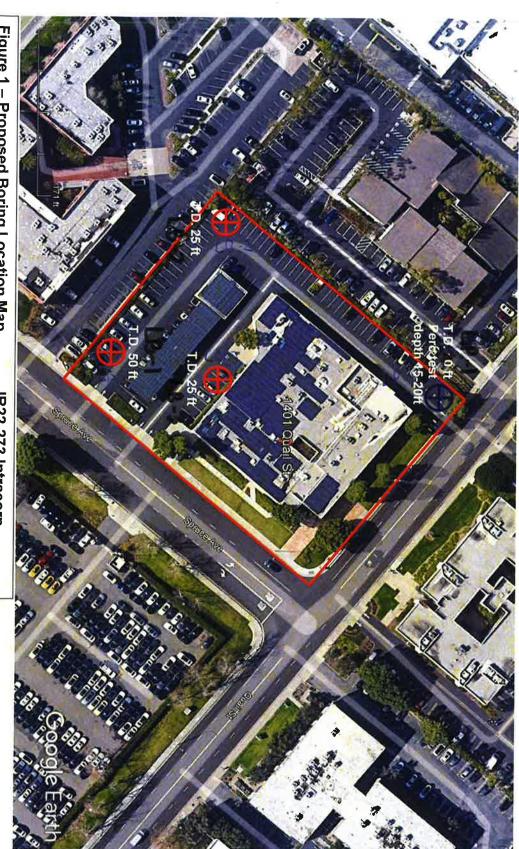
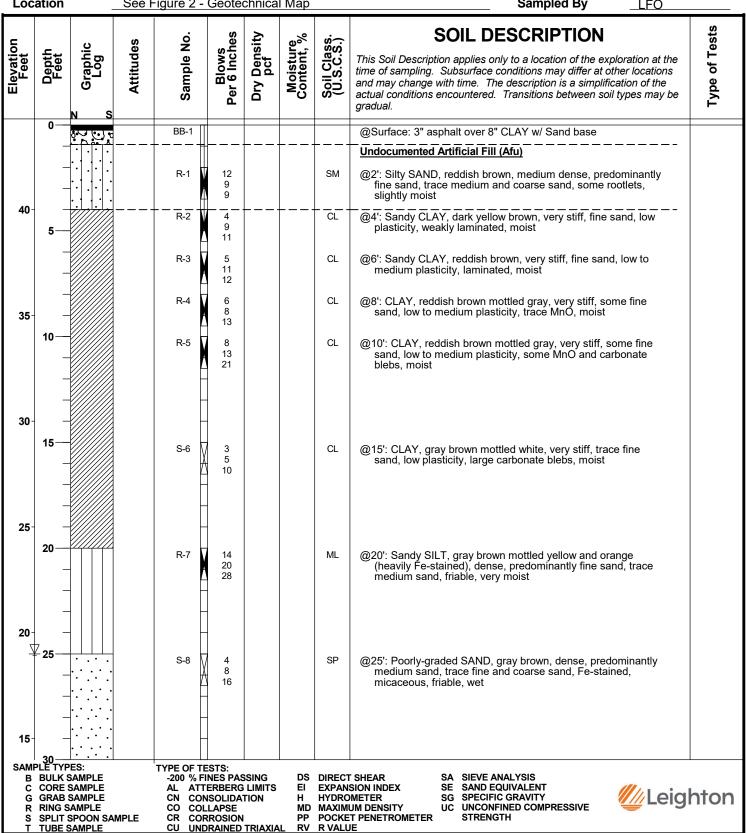
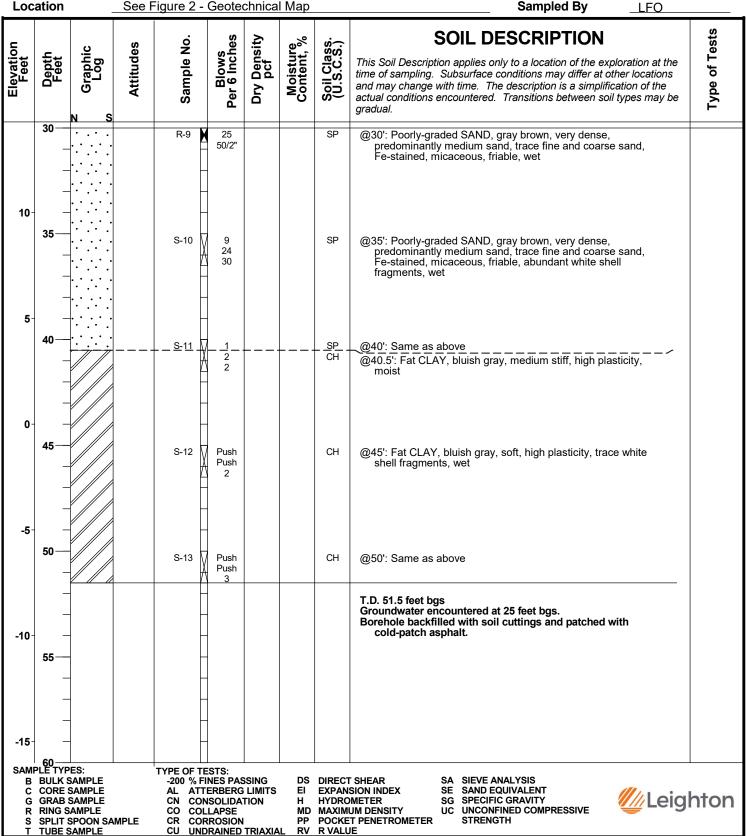


Figure 1 – Proposed Boring Location Map
1401 Quail Street, Newport Beach, CA

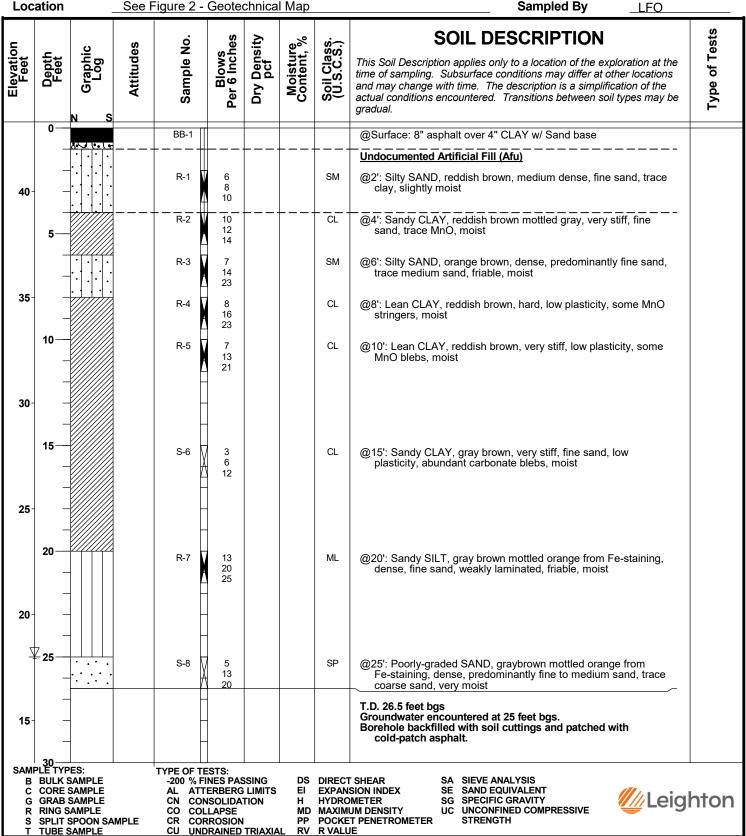

Approximate location of hollow stem a

IR22-273 Intracorp

⊕ Approximate location of hollow stem auger poring snowing proposed (T.D.) in feet below adjacent grade. Project boundary outlined above in red. Ф Proposed infiltration test boring shown with test depth between 15-20ft Approximate location of hollow stem auger boring showing proposed depth


GEOTECHNICAL BORING LOG LB-1

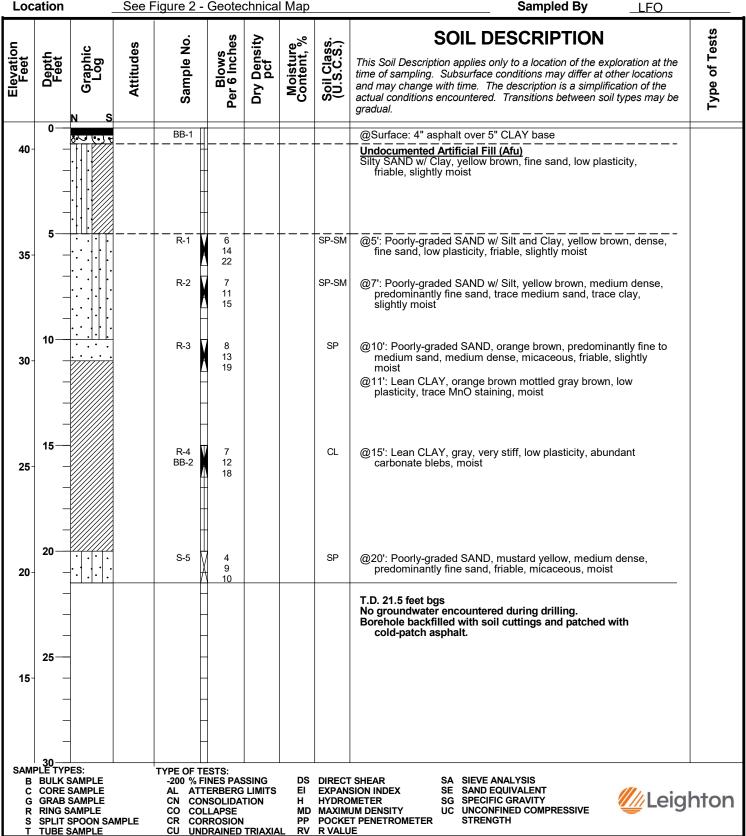
Project No. 13542.001 5-20-22 **Date Drilled Project** Intracorp Quail St Logged By **LFO Drilling Co.** Martini Drilling Corp **Hole Diameter** 8" **Drilling Method** Hollow Stem Auger - 140lb - Autohammer - 30" Drop 44' **Ground Elevation** Location See Figure 2 - Geotechnical Map Sampled By LFO


GEOTECHNICAL BORING LOG LB-1

Project No. 5-20-22 13542.001 **Date Drilled Project** Intracorp Quail St **LFO** Logged By **Drilling Co.** 8" Martini Drilling Corp **Hole Diameter Drilling Method** Hollow Stem Auger - 140lb - Autohammer - 30" Drop **Ground Elevation** 44' Location See Figure 2 - Geotechnical Map Sampled By


GEOTECHNICAL BORING LOG LB-2

Project No.	13542.001	Date Drilled	5-20-22
Project	Intracorp Quail St	Logged By	LFO
Drilling Co.	Martini Drilling Corp	Hole Diameter	8"
Drilling Method	Hollow Stem Auger - 140lb - Autohammer - 30" Drop	Ground Elevation	43'
Location	See Figure 2 - Geotechnical Map	Sampled By	LFO


GEOTECHNICAL BORING LOG LB-3

Project No.	13542.001	Date Drilled	5-20-22
Project	Intracorp Quail St	Logged By	LFO
Drilling Co.	Martini Drilling Corp	_ Hole Diameter	8"
Drilling Method	Hollow Stem Auger - 140lb - Autohammer - 30" Drop	Ground Elevation	42'
Location	See Figure 2 - Geotechnical Map	Sampled By	LFO

GEOTECHNICAL BORING LOG LP-1

Project No. 13542.001 5-20-22 **Date Drilled Project** Intracorp Quail St Logged By **LFO Drilling Co.** Martini Drilling Corp **Hole Diameter** 8" **Drilling Method** Hollow Stem Auger - 140lb - Autohammer - 30" Drop 41' **Ground Elevation** See Figure 2 - Geotechnical Map Sampled By

Boring Percolation Test Data Sheet

1

Project Number: 13542.001 **Test Hole Number:** LP-1 **Project Name:** IntraCorp Quail Street 5/20/2022 Date Excavated: Date Tested: 5/20/2022 **Earth Description:** Alluvium **Liquid Description:** Depth of boring (ft): 20 Tap water Tested By: BTM/LFO Radius of boring (in): 4

<u>Time Interval Standard</u> Radius of casing (in):

Start Time for Pre-Soak: 8:21 AM Length of slotted of casing (ft): 5
Start Time for Standard: 8:59 AM Depth to Initial Water Depth (ft):

Standard Time Interval13Porosity of Annulus Material, n:0.35Between Readings, mins:5Bentonite Plug at Bottom:No

Field Percolation Data - Falling Head Test

Reading	Time	Time Interval, Δt (min.)	Initial/Final Depth to	Initial/Final Water Height, H ₀ /H _f	Total Water Drop, Δd (in.)	Infiltration Rate (in./hr.)
	8:21	, ,	Water (ft.) 15.00	(in.) 60.0	1, ,	, , ,
P1	8:34	13	19.50	6.0	54.0	5.56
	8:39		15.00	60.0		
P2	8:55	15	19.50	6.0	54.0	4.99
		+		†		
1	8:59	5	15.00	60.0	27.8	5.43
	9:04	+	17.32	32.2		
2	9:06	5	15.00	60.0	28.3	5.55
	9:11		17.36	31.7		
3	9:12	5	15.00	60.0	28.9	5.70
	9:17	+	17.41	31.1		
4	9:19	5	15.00	60.0	28.7	5.64
	9:24	1	17.39	31.3		
5	9:25	5	15.00	60.0	29.0	5.73
	9:30		17.42	31.0		
6	9:32	5	15.00	60.0	28.6	5.61
	9:37		17.38	31.4		
7	9:38	5	15.00	60.0	28.6	5.61
	9:43		17.38	31.4		
8	9:45	5	15.00	60.0	29.0	5.73
	9:50		17.42	31.0	23.0	3.73
9	9:54	5	15.00	60.0	28.8	5.67
<u> </u>	9:59	3	17.40	31.2	20.0	3.07
10	10:02	5	15.00	60.0	25.4	4.84
10	10:07]	17.12	34.6	23.4	4.04
11	10:09	5	15.00	60.0	29.8	5.92
11	10:14]	17.48	30.2	29.0	5.92
12	10:16	-	15.00	60.0	29.3	F 90
12	10:21	5	17.44	30.7	29.3	5.80
42	10:24	-	15.00	60.0	20.4	F 02
13	10:29	5	17.45	30.6	29.4	5.83
4.4	10:30	_	15.00	60.0	20.4	6.02
14	10:35	5	17.51	29.9	30.1	6.02
	10:38	_	15.00	60.0		
15	10:43	5	17.49	30.1	29.9	5.95
	10:44	_	15.00	60.0		
16	10:49	5	17.45	30.6	29.4	5.83
	10:52		15.00	60.0		
17	10:57	5	17.50	30.0	30.0	5.98
	10:58		15.00	60.0		
18	11:03	5	17.41	31.1	28.9	5.70
	10:07	1	15.00	60.0		
19	11:12	5	17.41	31.1	28.9	5.70
	11:12	+	15.00	60.0	<u></u>	<u> </u>
20	11:13	5	17.41	31.1	28.9	5.70
	11:19	+	15.00	60.0		
17	11:19	5	17.54	29.5	30.5	6.11
	11:24	1	15.00	60.0		
18	11:32	5	17.53	29.6	30.4	6.08
	11:32	+	17.53	60.0		
19		5			30.8	6.21
	11:40	+	17.57	29.2		
20	11:41	5	15.00	60.0	30.8	6.21
	11:46	1	17.57	29.2		
21	11:48	5	15.00	60.0	30.0	5.98
	11:53	-	17.50	30.0		
22	11:54	5	15.00	60.0	30.1	6.02
	11:59		17.51	29.9		

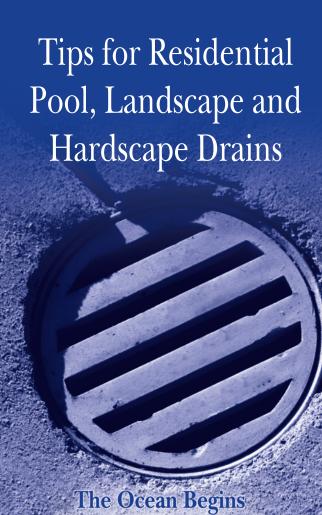
Infiltration Rate (I) = Discharge Volume/Surface Area of Test Section/Time Interval

Measured Infiltration Rate, I (Average of Last 3 Readings) = 6.07 in./hr.

ATTACHMENT F EDUCATIONAL MATERIALS

For more information, please call the **Orange County Stormwater Program** at **1-877-89-SPILL** (1-877-897-7455) or visit

www.ocwatersheds.com


To report a spill, call the **Orange County 24-Hour Water Pollution Problem Reporting Hotline** at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Residential Pool, Landscape and Hardscape Drains

Pool Maintenance

All pool water discharged to the curb, gutter or permitted pool drain from your property must meet the following water quality criteria:

- The residual chlorine does not exceed 0.1 mg/L (parts per million).
- The pH is between 6.5 and 8.5.
- The water is free of any unusual coloration.
- There is no discharge of filter media or acid cleaning wastes.

Some cities have ordinances that do not allow pool water to be discharged to the storm drain. Check with your city.

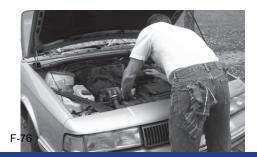
Landscape and Hardscape Drains

The following recommendations will help reduce or prevent pollutants from your landscape and hardscape drains from entering the street, gutter or storm drain. Unlike water that enters the sewer (from sinks and toilets), water that enters a landscape or hardscape drain is not treated before entering our creeks, rivers, bays and ocean.

Household Activities

- Do not rinse spills of materials or chemicals to any drain.
- Use dry cleanup methods such as applying cat litter or another absorbent material, then sweep it up and dispose of it in the trash. If the material is hazardous, dispose of it at a Household Hazardous Waste Collection Center (HHWCC). For locations, call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveways, sidewalks or patios to your landscape or hardscape drain. Sweep up debris and dispose of it in the trash.
- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash.

Do not store items such as cleaners, batteries, automotive fluids, paint products, TVs, or computer monitors uncovered outdoors. Take them to a HHWCC for disposal.


Yard Maintenance

- Do not overwater. Water by hand or set automated irrigation systems to reflect seasonal water needs.
- Follow directions on pesticides and fertilizers (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Cultivate your garden often to control weeds and reduce the need to use chemicals.

Vehicle Maintenance

- Never pour oil or antifreeze down your landscape or hardscape drain. Recycle these substances at a service station, a waste collection center or used oil recycling center. For locations, contact the Used Oil Program at 1-800-CLEANUP or visit www.CLEANUP.org.
- Whenever possible, take your vehicle to a commercial car wash.
- If you do wash your vehicle at home, do not allow the washwater to go down your landscape or hardscape drain. Instead, dispose of it in the sanitary sewer (a sink or toilet) or onto an absorbent surface such as your lawn.
- Use a spray nozzle that will shut off the water when not in use.

lean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities such as pest control can lead to water pollution if you're not careful. Pesticide treatments must be planned and applied properly to ensure that pesticides do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

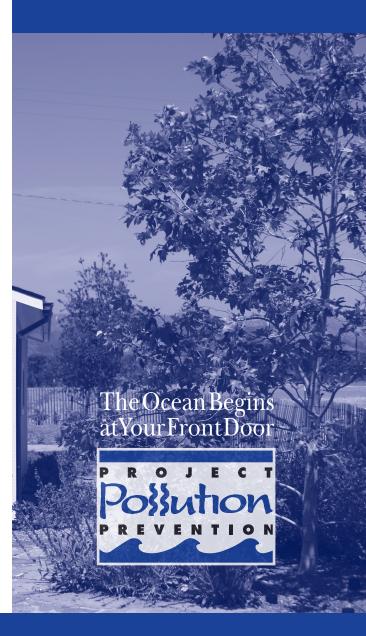
You would never dump pesticides into the ocean, so don't let it enter the storm drains. Pesticides can cause significant damage to our environment if used improperly. If you are thinking of using a pesticide to control a pest, there are some important things to consider.

For more information,
please call
University of California Cooperative
Extension Master Gardeners at
(714) 708-1646
or visit these Web sites:
www.uccemg.org
www.ipm.ucdavis.edu

For instructions on collecting a specimen sample visit the Orange County
Agriculture Commissioner's website at:
http://www.ocagcomm.com/ser_lab.asp

To report a spill, call the
Orange County 24-Hour
Water Pollution Problem
Reporting Hotline
at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.


Information From:
Cheryl Wilen, Area IPM Advisor; Darren Haver,
Watershed Management Advisor; Mary
Louise Flint, IPM Education and Publication
Director; Pamela M. Geisel, Environmental
Horticulture Advisor; Carolyn L. Unruh,
University of California Cooperative
Extension staff writer. Photos courtesy of
the UC Statewide IPM Program and
Darren Haver.

Funding for this brochure has been provided in full or in part through an agreement with the State Water Resources Control Board (SWRCB) pursuant to the Costa-Machado Water Act of 2000 (Prop. 13).

Help Prevent Ocean Pollution:

Responsible Pest Control

Tips for Pest Control

Key Steps to Follow:

Step 1: Correctly identify the pest (insect, weed, rodent, or disease) and verify that it is actually causing the problem.

Three life stages of the common lady beetle, a beneficial insect.

This is important because beneficial insects are often mistaken for pests and sprayed with pesticides needlessly.

Consult with a Certified Nursery

Professional at a local nursery or garden center or send a sample of the pest to the Orange County Agricultural Commissioner's Office.

Determine if the pest is still present – even though you see damage, the pest may have left.

Step 2: Determine how many pests are present and causing damage.

Small pest populations may be controlled more safely using non-

pesticide techniques. These include removing food sources, washing off leaves with a strong stream of water, blocking entry into the home using caulking and replacing problem plants with ones less susceptible to pests.

Integrated Pest Management (IPM) usually combines several least toxic pest control methods for long-term prevention and management of pest problems without harming you, your family, or the environment.

Step 3: If a pesticide must be used, choose the least toxic chemical.

Obtain information on the least toxic pesticides that are effective at controlling the target pest from the UC Statewide Integrated Pest Management (IPM) Program's Web site at www.ipm.ucdavis.edu.

Seek out the assistance of a Certified Nursery Professional at a local nursery or garden center when selecting a pesticide. Purchase the smallest amount of pesticide available.

Apply the pesticide to the pest during its most vulnerable life stage. This information can be found on the pesticide label.

Step 4: Wear appropriate protective clothing.

Follow pesticide labels regarding specific types of protective equipment you should wear. Protective clothing should always be washed separately from other clothing.

Step 5: Continuously monitor external conditions when applying pesticides such as weather, irrigation, and the presence of children and animals.

Never apply pesticides when rain is predicted within the next 48 hours. Also, do not water after applying pesticides unless the directions say it is necessary.

Apply pesticides when the air is still; breezy conditions may cause the spray or dust to drift away from your targeted area.

In case of an emergency call 911 and/or the regional poison control number at (714) 634-5988 or (800) 544-4404 (CA only).

For general questions you may also visit www.calpoison.org.

Step 6: In the event of accidental spills, sweep up or use an absorbent agent to remove any excess pesticides. Avoid the use of water.

Be prepared. Have a broom, dust pan, or dry absorbent material, such as cat litter, newspapers or paper towels, ready to assist in cleaning up spills.

Contain and clean up the spill right away. Place contaminated materials in a doubled plastic bag. All materials used to clean up the spill should be properly disposed of according to your local Household Hazardous Waste Disposal site.

Step 7: Properly store and dispose of unused pesticides.

Purchase Ready-To-Use (RTU) products to avoid storing large concentrated quantities of pesticides.

Store unused chemicals in a locked cabinet.

Unused pesticide chemicals may be disposed of at a Household Hazardous Waste Collection Center.

Empty pesticide containers should be triple rinsed prior to disposing of them in the trash.

Household Hazardous Waste Collection Center (714) 834-6752 www.oclandfills.com

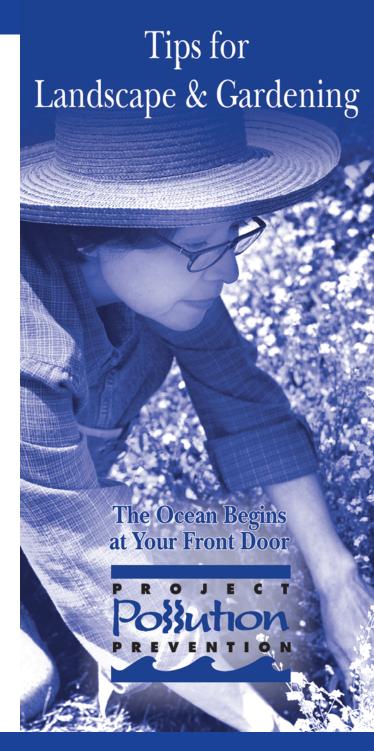
llean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Fertilizers, pesticides and other chemicals that are left on yards or driveways can be blown or washed into storm drains that flow to the ocean. Overwatering lawns can also send materials into storm drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never pour gardening products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution.

For more information,
please call the

Orange County Stormwater Program
at 1-877-89-SPILL (1-877-897-7455)
or visit
www.ocwatersheds.com

UCCE Master Gardener Hotline: (714) 708-1646


To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while landscaping or gardening. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

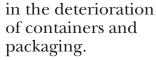
Help Prevent Ocean Pollution:

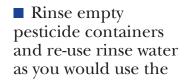
Tips for Landscape & Gardening

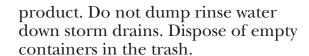
Never allow gardening products or polluted water to enter the street, gutter or storm drain.

General Landscaping Tips

- Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.
- ■Prevent erosion of slopes by planting fast-growing, dense ground covering plants. These will shield and bind the soil.
- ■Plant native vegetation to reduce the amount of water, fertilizers, and pesticide applied to the landscape.
- Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.


Garden & Lawn Maintenance


■Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or micro spray systems. Periodically inspect and fix leaks and misdirected sprinklers.


Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain.
Instead, dispose of green waste by composting, hauling it to a permitted landfill, or recycling it through your

city's program.

- Use slow-release fertilizers to minimize leaching, and use organic fertilizers.
- Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.
- Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result

- When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting. For more information, visit www.ipm.ucdavis.edu.
- ■If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.
- Take unwanted pesticides to a Household Hazardous Waste Collection Center to be recycled. Locations are provided below.

Household Hazardous Waste Collection Centers

Anaheim: 1071 N. Blue Gum St. Huntington Beach: 17121 Nichols St. Irvine: 6411 Oak Canyon San Juan Capistrano: 32250 La Pata Ave.

For more information, call (714) 834-6752 or visit www.oclandfills.com

Preventing water pollution at your commercial/industrial site

Clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many landscape and building maintenance activities can lead to water pollution if you're not careful. Paint, chemicals, plant clippings and other materials can be blown or washed into storm drains that flow to the ocean. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

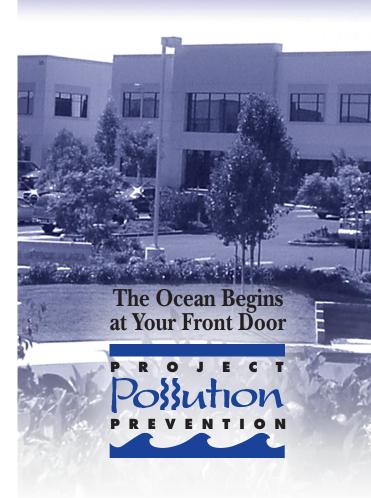
You would never pour soap or fertilizers into the ocean, so why would you let them enter the storm drains? Follow these easy tips to help prevent water pollution.

Some types of industrial facilities are required to obtain coverage under the State General Industrial Permit. For more information visit: www.swrcb.ca.gov/stormwater/industrial.html

For more information,
please call the

Orange County Stormwater Program
at 1-877-89-SPILL (1-877-897-7455)
or visit
www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).


For emergencies, dial 911.

Help Prevent Ocean Pollution:

Proper Maintenance Practices for Your Business

Proper Maintenance Practices for your Business

Landscape Maintenance

- Compost grass clippings, leaves, sticks and other vegetation, or dispose of it at a permitted landfill or in green waste containers. Do not dispose of these materials in the street, gutter or storm drain.
- Irrigate slowly and inspect the system for leaks, overspraying and runoff. Adjust automatic timers to avoid overwatering.
- Follow label directions for the use and disposal of fertilizers and pesticides.
- Do not apply pesticides or fertilizers if rain is expected within 48 hours or if wind speeds are above 5 mph.
- Do not spray pesticides within 100 feet of waterways.
- Fertilizers should be worked into the soil rather than dumped onto the surface.
- If fertilizer is spilled on the pavement or sidewalk, sweep it up immediately and place it back in the container.

Building Maintenance

- Never allow washwater, sweepings or sediment to enter the storm drain.
- Sweep up dry spills and use cat litter, towels or similar materials to absorb wet spills. Dispose of it in the trash.
- If you wash your building, sidewalk or parking lot, you **must** contain the water. Use a shop vac to collect the water and contact your city or sanitation agency for proper disposal information. Do not let water enter the street, gutter or storm drain.
- Use drop cloths underneath outdoor painting, scraping, and sandblasting work, and properly dispose of materials in the trash.
- Use a ground cloth or oversized tub for mixing paint and cleaning tools.
- Use a damp mop or broom to clean floors.
- Cover dumpsters to keep insects, animals, rainwater and sand from entering. Keep the area around the dumpster clear of trash and debris. Do not overfill the dumpster.

- Call your trash hauler to replace leaking dumpsters.
- Do not dump any toxic substance or liquid waste on the pavement, the

ground, or near a storm drain. Even materials that seem harmless such as latex paint or biodegradable cleaners can damage the environment.

NEVER DISPOSE OF ANYTHING IN THE STORM DRAIN.

- Recycle paints, solvents and other materials. For more information about recycling and collection centers, visit www.oclandfills.com.
- Store materials indoors or under cover and away from storm drains.
- Use a construction and demolition recycling company to recycle lumber, paper, cardboard, metals, masonry, carpet, plastic, pipes, drywall, rocks, dirt, and green waste. For a listing of construction and demolition recycling locations in your area, visit www.ciwmb.ca.gov/recycle.
- Properly label materials. Familiarize employees with Material Safety Data Sheets.

ATTACHMENT G OPERATION AND MAINTENANCE INFORMATION

WQMP Operation & Maintenance (O&M) Plan

Prepared for: 1401 Quail Street Newport Beach, CA 92660

Legal Project Description:

REAL PROPERTY IN THE CITY OF NEWPORT BEACH, COUNTY OF ORANGE, STATE OF CALIFORNIA, DESCRIBED AS FOLLOWS:

PARCEL 1 OF PARCEL MAP NO. 341, AS PER MAP FILED IN BOOK 44, PAGE 38 OF PARCEL MAPS, IN THE OFFICE OF THE COUNTY RECORDER OF SAID COUNTY.

EXCEPT THE FULL RIGHTS TO ALL MINERALS, PETROLEUM, GAS AND OTHER HYDROCARBON SUBSTANCES EXISTING BELOW 500 FEET FROM THE SURFACE OF SAID REAL PROPERTY DESCRIBED ABOVE, PROVIDED, HOWEVER, THAT GRANTOR HEREBY EXPRESSLY WAIVES THE RIGHT TO ENTER UPON THE SURFACE OF SAID REAL PROPERTY FOR THE PURPOSE OF EXPLORING FOR, OR PRODUCING THE MINERALS, PETROLEUM, GAS AND OTHER HYDROCARBON SUBSTANCES SO RESERVED, AS RESERVED IN THE DEED RECORDED AUGUST 22, 1973 IN BOOK 10863, PAGE 782 OF OFFICIAL RECORDS.

APN: 427-332-04

BMP Inspection/Maintenance Inspection/ **Minimum** Responsible **BMP Maintenance** Frequency of Party(s) **Activities Activities Required** -Inspect semiannually for Permavoid Planter beginning (October) and end of Owner Ongoing Areas the wet season (April) Educational materials will be provided to tenants annually. Materials to be **Education** for distributed are found in Property Owners, **Owner** Attachment F. Tenants will be Annually Tenants and provided these materials **Occupants** by the Owner prior to occupancy and periodically thereafter The Owner will prescribe activity restrictions to protect surface water quality, through lease terms or other equally effective measure, for **Activity Restrictions Owner** Ongoing the property. Restrictions include, but are not limited to, prohibiting vehicle maintenance or vehicle washing. Maintenance shall be consistent with City requirements. Fertilizer and/or pesticide usage shall be consistent with County **Management Guidelines** Common Area for Use of Fertilizers (OC Landscape **Owner** Monthly DAMP Section 5.5) as well Management as local requirements. Maintenance includes mowing, weeding, and debris removal on a weekly basis. Trimming, replanting,

and replacement of

		mulch shall be performed on an as-needed basis to prevent exposure of erodible surfaces. Trimmings, clippings, and other landscape wastes shall be properly disposed of in accordance with local regulations. Materials temporarily stockpiled during maintenance activities shall be placed away from water courses and storm drain inlets.	
Common Area Litter Control	Owner	Litter patrol and other litter control activities shall be performed on a weekly basis and in conjunction with routine maintenance activities.	Weekly
Employee Training	Owner	Educate all new employees/ managers on storm water pollution prevention, particularly good housekeeping practices, prior to the start of the rainy season (October 1). Refresher courses shall be conducted on an as needed basis.	Annually
Street Sweeping Private Streets and Parking Lots	Owner	Drive aisles & parking areas must be swept at least quarterly (every 3 months), including prior to the start of the rainy season (October 1).	Quarterly
Common Area Catch Basin Inspection	Owner	Catch basin inlets and other drainage facilities shall be inspected after each storm event and once per year. Inlets and other facilities shall be cleaned prior to the rainy season, by October 1 each year.	Annually

Storm Drain Stencilling and Signage	Owner	Storm drain stencils shall be inspected for legibility, at minimum, once prior to the storm season, no later than October 1 each year. Those determined to be illegible will be re-stencilled as soon as possible.	Annually
Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	Owner	In conjunction with routine maintenance activities, verify that landscape design continues to function properly by adjusting properly to eliminate overspray to hardscape areas, and to verify that irrigation timing and cycle lengths are adjusted in accordance with water demands, given time of year, weather, and day or night time temperatures. System testing shall occur twice per year. Water from testing/flushing shall be collected and properly disposed to the sewer system and shall not discharge to the storm drain system.	Twice per year

BMP OPERATION & MAINTENANCE LOG

Today's Date:

	Signa
Brief Description of Implementation, Maintenance, and Inspection Activity Performed	BMP Name (As Shown in O&M Plan)

TRAINING / EDUCATIONAL LOG

Date of Training/Educational Ac	tivity:
Name of Person Performing Ac (Pri	etivity nted):
Signa	ature:
Topic of Training/Educational Activ	rity:
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant
Name of Participant	Signature of Participant

For newsletter or mailer educational activities, please include the following information:

- Date of mailing
- Number distributed
- Method of distribution
- Topics addressed

If a newsletter article was distributed, please include a copy of it.